
 1

Marin Aglić Čuvić

Dept. of Informatics

Faculty of Science

Split, Croatia

maragl@pmfst.hr

Abstract—Different types of visualizations have been

developed to assist novices with learning to program. These

include program visualization systems and visual programming

languages, among others. Program visualizations are used to

represent how a program is executed by the notional machine;

an abstract machine formed from the concepts of a

programming language. Visual programming languages

(VPLs), on the other hand, attempt to simplify learning to

program by providing visual representations of programming

concepts. They visually represent the structure of a program,

and sometimes visualize its execution. We focus mostly on

dataflow visual programming languages as a subcategory of

VPLs. We provide a literature review on program visualizations

from 2013 to July 2019. Afterwards, we take a look at different

taxonomies of VPLs and describe dataflow visual programming

languages. The paper also discusses a visual dataflow language

for learning programming and a program visualization system

for actor programs.

Keywords—actor programs, education, dataflow visual

language, program visualization, review

I. INTRODUCTION

Numerous studies have reported that learning to program
is difficult. Programming requires novices to possess complex
problem-solving skills as well as learn the syntax and logic of
programming constructs. Introductory programming courses
often have a set of learning outcomes that students need to
achieve. A typical CS1 course may teach students concepts
such as variables, branching, loops and functions. Novices are
then expected to master each concept to some degree which
they demonstrate by solving problems.

It is suggested that course difficulty depends on "how
much a student should be able to achieve" for its duration
(Luxton-Reilly, 2016). Lower teacher expectations or
teaching fewer concepts may make introductory programming
easier. However, lowering expectations could lead to a
situation where students' do not master the concepts at a level
required by a future course. Reducing the number of concepts
in a CS1 course may mean moving them to a later course
which may introduce problems of its own. Additionally,
students that are not enrolled in computer science, but have
some computing course, may already be taught only the
basics.

Much research in programming education is concerned
with improving the ways to teach introductory programming.
Such studies may be divided into five categories: theories,
orientation, delivery, tools and infrastructure (Luxton-Reilly
et al., 2018). Additionally, the choice of programming
language for a first course is the topic of much debate (Stefik
& Hanenberg, 2014). Visual programming languages (VPL)
have been developed to reduce the effort of learning

programming syntax and errors related to it. In this paper, we
are interested in visual programming languages (VPLs) and
generic program visualization (PV) systems. Their aim is to
reduce the barrier of learning to program.

Literature reviews provide a way to inform researchers and
educators of the current trends and tools available to improve
their teaching and students' learning experience. Therefore,
we conducted a literature review of program visualization
systems. We discuss each tool with regard to the engagement
taxonomy provided by Sorva, its features and evaluations
(Sorva, Karavirta, & Malmi, 2013). We do not include
program visualization systems that have been recognized as
inactive in previous literature reviews.

Existing engagement taxonomies for PV systems are
discussed in this paper. Each taxonomy defines certain
engagement levels that describe different ways learners can
engage with the visualization. Higher engagement levels
should often require greater cognitive effort and lead to better
learning (Naps et al., 2002).

Most PV systems share a certain set of features, such as
stepping through the execution and highlighting the current
instruction. We developed a dataflow programming language
(DFVPL) for introductory programming that supports some of
the features found in PVs. The system was later extended to
support the demonstration of programs written in the
functional programming paradigm. We used the system in an
introductory and functional programming setting and provide
a brief report on our experiences.

Finally, we describe a system for visualizing the
interaction between actors in the actor model. The system can
also be extended to visualize the communication between
other types of entities such as objects and agents. The results
of the pilot study we conducted seem promising (Čolak &
Čuvić, 2019).

The remainder of this paper is organized as follows.
Section II gives theoretical background about the notional
machine, and section III discusses visualizations and their
relationship to the notional machine. In section IV we give a
brief overview of existing engagement taxonomies. Section V
discusses previous literature reviews on program
visualizations, and section VI describes our methodology.
Program visualization systems, their features and evaluation
are described in section VII. Visual programming languages
are discussed in more detail in section VIII with a focus on
DFVPLs. Section IX introduces the visualization systems that
we have developed and describes our experiences and studies
with them. Section X describes recent DFVPLs with
application in data science. Section XI discusses our
conclusion and describes future work.

A review of program visualizations and design

of a visual dataflow language

 2

II. THE NOTIONAL MACHINE

Rather than just writing computer programs, programming
includes reading, understanding, and tracing the execution of
already written code. These skills enable programmers to find
bugs, improve the existing codebase, and add new
functionality. However, programmers require a mental model
of the system to do so. The same is true for novices.

Mental models are mental structures that one possesses
about a system (Sorva, 2013). In the case of programming, that
system is the machine that executes the program. Mental
models are runnable, which allows programmers to use them
to simulate program execution in memory.

Useful mental models are ones that are at an appropriate
level of abstraction (Hidalgo-Céspedes, Marín-Raventós, &
Lara-Villagrán, 2016; Sorva, 2013). If a model is at a low level
of abstraction, it may not be trackable due to many variables
and states. A model at a high level of abstraction may exclude
essential information. Programmers reason about a program at
the level of abstraction provided by the programming
language. These abstractions form a new machine, that is
called a notional machine. Different programming languages
can have different notional machines. Furthermore, a single
programming language is not limited to a single machine. E.g.,
an object-oriented programming (OOP) language may have
two notional machines, one for reasoning about the behavior
of a method inside an object, and another to reason about the
interactions between objects. Some programming languages,
such as Scala, which support OOP and functional
programming (FP) may have an additional notional machine.
This machine might allow us to reason about a program in
terms of data transformations in a pipeline of functions.

Novices need to acquire a correct mental model of the
notional machine to write correct programs (Sorva, 2013).
However, their models are often faulty, based on superficial
language features, and contain misconceptions. We define a
misconception as an incomplete or incorrect understanding of
a programming concept. Du Bouley (1986) found that the
causes of most misconceptions are faulty understandings of
the notional machine. While the formation of mental models
is intuitive, correcting existing ones is significantly more
difficult (Schumacher & Czerwinski, 1992). The problem is
that people feel comfortable with the mental model they
already have, despite its potential flaws. Solving a
programming problem successfully with a faulty mental
model may reinforce a novice's belief in its correctness.
Therefore, it is necessary to provide a correct model of the
machine as soon as possible.

Visualizations of the notional machine may assist novices
with the construction of valid mental models (Sorva, 2013).
They provide a concrete view of how the notional machine
executes a program. A teacher may choose to draw
visualizations on the blackboard or use a program
visualization tool. Many different tools exist which support
visualizing the execution of one or more programming
languages.

Another way to deal with misconceptions is to introduce
cognitive conflict. Cognitive conflict refers to challenging
novices' existing non-viable mental models in order to
encourage them to recognize the errors in them and seek
improvement (Ma, Ferguson, Roper, Ross, & Wood, 2009).
Ma et al. (2008) proposed four stages of using cognitive
conflict for teaching programming with program

visualizations. Those stages include: 1) identify typical
inappropriate models, 2) challenge existing mental models
and push novices into cognitive conflict status, 3) assist
novices with the construction of viable models, and 4) allow
novices to solve programming problems on their own.

 Visual programming languages may also be useful to
alleviate some of the difficulties when learning about the
notional machine. Their graphical representations have a
much simpler syntax and provide a clearer view of a program's
structure. Additionally, some visual languages have a stage
which is used to visualize the execution of a subset of
instructions, like Scratch for example (Maloney, Resnick,
Rusk, Silverman, & Eastmond, 2010).

III. VISUALIZATIONS

Visualization refers to the use of graphical elements to
represent information and other phenomena (Čuvić, Maras, &
Mladenović, 2017; Hidalgo-Céspedes et al., 2016). They are
often used to facilitate the formation of mental representations
of complex and abstract phenomena (Sorva, Karavirta, et al.,
2013). Some applications include data, knowledge, and
educational visualization. A visualization that is used to
represent some aspects of software is called a software
visualization (SV).

Several taxonomies for SVs have been proposed (E.
Lahtinen & Ahoniemi, 2005; Maletic, Marcus, & Collard,
2002; Myers, 1990; Naps et al., 2002; Price, Baecker, &
Small, 1993; Roman & Cox, 1993; Sorva, Karavirta, et al.,
2013; Stasko & Patterson, 1992). Some of them focus on SVs
in general, while others focus on those used to teach
programming. For example, the taxonomy introduced by
Maletic, Marcus, & Collard (2002) uses five dimensions to
describe SVs based on their support for software development
and maintenance. Price, Baecker, & Small (1993) a taxonomy
that consists of categories and subcategories organized into a
multi-level n-array tree. Their taxonomy is extensive and
designed to be extendable. Lahtinen & Ahoniemi (2005)
introduced a taxonomy for introductory programming course
visualizations based on their support for different levels of
Bloom's taxonomy. Naps et al. (2002) introduced a taxonomy
for educational visualizations based on their supported level
of engagement.

In this paper, we adopt the classification introduced by
Price et al. (1993) and adopted by Sorva (2013). The field of
software visualization contains two broad subfields: algorithm
visualization (AV) and program visualization (PV).
Algorithm visualization tools represent algorithms at a high
level of abstraction. They are often independent of the
programming language and targeted towards advanced
programming courses. Program visualization tools visualize
concrete programs on a lower level of abstraction. They often
target novice programmers. The adopted classification
recognizes two subfields of PVs: visualizations of static code
and runtime visualizations. We focus on PVs that visualize the
execution of programs by the notional machine.

Included into this categorization is visual programming.
Visual languages enable the specification of programs using
visual techniques (Price et al., 1993; Sorva, Karavirta, et al.,
2013). They can be used to specify code and represent runtime
dynamics. Therefore, they are included as a subfield of both
static code visualization and runtime dynamics visualization.
For example, it is possible to specify code in Blockly and

 3

visualize which instruction is executed (“Blockly,” n.d.). We
will refer to executable visual languages as visual
programming languages (VPL). When adopting the
classification introduced by Price et al. (1993), Sorva (2013)
also added visual programming simulations (VPS). VPS is a
subtype of runtime dynamics visualizations. It allows the user
to manipulate graphics in order to simulate the execution of a
program by the machine (Sorva & Sirkia, 2010).

For completeness we mention the SV classification used
by Hidalgo-Céspedes et al. (2016) in their literature review on
PVs. They classify SVs into three main types based on the
representation's level of detail: code visualization, algorithm
visualization and program visualization. Therefore, code
visualization is considered one of the main fields, rather than
a subfield of PVs. Additionally, they report that the target
audience for code visualizations are professional developers,
while PVs target novice programmers.

In this paper, we are interested in those PVs that visualize
the execution of a program by the notional machine. Going
forward, when talking about program visualizations we refer
to program visualization tools that visualize the execution of
the notional machine.

IV. ENGAGEMENT TAXONOMIES

The components of a visualization and its level of
abstraction determine what is possible to learn from it (Sorva,
Karavirta, et al., 2013). They also influence its applicability
for learning different content. However, passively viewing a
visualization may not produce the expected impact on
learning. Instead, learners must actively engage with the
visualization to benefit from it (Ben-Ari, 1998).

Hundhausen et al. (2002) conducted a meta-study of AV
effectiveness. They noticed that 71% of studies that included
active engagement of learners reported significant results. In
contrast, only 33% of studies that did not actively engage
learners reported significant results. The authors concluded
that the way learners engage with the visualization has a more
significant impact on learning than its visual representation.
These findings motivated the introduction of engagement
taxonomies for software visualizations.

Naps et al. (2002) introduced the first SV engagement
taxonomy with a focus on AVs. For consistency with Sorva's
literature review, we refer to this taxonomy as the original
engagement taxonomy (OET). The OET introduced six levels
of engagement: no viewing, viewing, responding, changing,
constructing, and presenting. The levels represent increasingly
engaging forms of interaction. They do not form strict
hierarchies and overlap between levels above viewing is
possible (Naps et al., 2002). The introduction of OET
motivated further research focused on comparing the
effectiveness of different engagement levels (see, e.g.,
Urquiza-Fuentes & Velázquez-Iturbide [2013], Banerjee et al.
[2013; 2015]). The general consensus is that a higher level of
engagement will have a more significant impact on learning.

 Algorithm and program visualizations do not always
support the same kind of user interactions. Because the OET
was based on AVs, it does not include some forms of
engagement typical of PVs. Myller et al. (2009) noticed this
and introduced the extended engagement taxonomy (EET).
The EET includes additional levels: controlled viewing,
entering input, modifying and reviewing.

Sorva et al. (2013) found certain shortcomings with the
levels of OET and EET. They addressed these shortcomings
by introducing a two-dimensional taxonomy (2DET). The first
dimension is the direct engagement dimension. They argue
that OET's constructing level contains two types of activities
that do not pose an equally challenging cognitive task. These
two types of activities are separated in the 2DET into creating
and applying. In this paper, we refer to those two activities as
constructing a and b when talking about the OET.
Furthermore, the presenting and reviewing levels of EET refer
to equally challenging tasks. These are combined in the 2DET
to presenting.

The other dimension of 2DET is the content ownership
dimension, which considers the relationship between the
learner and content that is visualized. Two level of the EET
also consider this relationship – entering input and modifying.
Sorva et al. (2013) believe that this relationship influences the
capability of learners to map the content to its visualization
and their motivation to engage with the visualization. Table 1
contains all of the levels of the three engagement taxonomies.

 Despite the newer taxonomies that are proposed, it seems
that OET is still predominantly used when comparing the
effectiveness of different engagement levels. There may be a
few reasons for this. One may be that most studies do not
compare engagement levels above responding, or even
viewing. Since the taxonomies greatly coincide on these lower
levels, there is no need to use a finer grained taxonomy.
Another reason may be that the OET has more abstract levels,
which leads to more activities being included in a single level.
This may be a consequence of drawing inspiration from AV
research. EET's categorization system is somewhat dubious in
its details (see Sorva 2013). Educational research usually takes
certain time, which may mean that researchers simply did not
have a chance to use the 2DET.

 Whatever the reason, we categorize the visualization tools
and the reviewed evaluations with regard to the 2DET.
Because most research on comparing the effectiveness of
different engagement levels is based on the OET, we provide
a table which sums up the relationship between the direct
engagement dimension of the 2DET to other engagement
taxonomies (Table 2). The table also provides explanations of
why we believe these relationships hold.

TABLE 1 ENGAGEMENT TAXONOMIES

OET levels EET levels

2DET

Direct

engagement

levels

Content

ownership

levels

1 No viewing No viewing No viewing Given

content

2 Viewing Viewing Viewing Own cases

3 Responding Controlled
viewing

Controlled
viewing

Modified
content

4 Changing Entering input Responding Own

content

5 Constructing Responding Applying

6 Presenting Changing Presenting

7 Modifying Constructing

8 Constructing

9 Reviewing

10 Presenting

 4

TABLE 2 RELATIONSIHP BETWEEN LEVELS OF DIFFERENT ENGAGEMENT TAXONOMIES

 2DET OET EET Description Reason

D
ir

ec
t

e
n

g
a
g

em
e
n

t
d

im
e
n

si
o

n

No viewing No viewing No viewing No visualization is used Intuitive

Viewing Viewing Viewing The learner views the visualization with little

or no interaction

Intuitive

Controlled
viewing

Viewing Controlled
viewing

Besides just viewing the visualization, the
learner can step through the execution,

control the visualization speed and inspect its
components.

OET's viewing level corresponds better to
controlled viewing since less cognitive

effort is required than for responding.

Responding Responding,

changing*

Responding,

entering input*,

modifying*

The learner responds to questions about the

visualized content. Can occur during or after

the visualization finishes.

Responding levels are intuitive. But the

entering input level can be considered

equivalent if a student is asked a question
to enter input that will result with some

behavior of the program - similar

reasoning as for changing in OET,
described by Naps.

Applying Constructing (a) Changing The learner modifies the visualization to

perform a task. An example is manipulation
of visualization components.

The first constructing activity described by

Naps et al. (2002) can take the form of
manipulating the visualization to simulate

the execution of an algorithm.

EET specifies changing as manipulating

visualization elements.

Presenting Presenting Presenting,

reviewing

The learner presents a detailed analysis or

description of the visualization, potentially to

an audience.

Sorva (2013) argues that the EET uses two

categories of equally challenging tasks and

these may be combined in a single
category.

Constructing Constructing (b),

presenting*

Constructing The learner creates his own visualizations of

the target software.

The OET's constructing level describes an

activity that requires users to construct
their own visualizations. For the presenting

level, it is equivalent if the learner creates

his own visualization.

* conditional equivalence

We note that it is difficult to relate the content ownership
dimension to some of the levels in the OET and EET.
However, the EET does include entering input and modifying
levels. These two levels would correspond to the own cases
and modified content levels in the content ownership
dimension respectively. Hence, it would make no sense to
relate them to the direct engagement dimension, which is why
they are not included in Table 2.

V. PREVIOUS PROGRAM VISUALIZATION REVIEWS

A comprehensive literature review on program
visualizations was conducted by Sorva et al. (2013). Their
review focuses on generic program visualizations of runtime
dynamics whose aim is to assist in learning and teaching. The
authors provide a brief summary of each tool as well as the
studies and results obtained from those studies of each tool.
Their review also includes information about the notional
machine elements each visualization supports, evaluation
method, and supported programming paradigm. The review
covers a period from the 1980s to 2013 and identifies 46
different visualization tools.

 Hidalgo-Céspedes et al. (2016) wrote a review to update
the program visualization list with tools that emerged from
2013 to 2016. Their review includes only active visualization
tools. However, they did not provide a summary of the studies
carried out with the tools or a comprehensive discussion on
their evaluation and supported notional machine elements.
They also did not discuss the engagement levels with regard
to the 2DET. Rather, the authors evaluated each tool based on
a set of constructivist principles.

Therefore, we base our review on that done by Sorva et al.
(2013) since it is more comprehensive. We include the tools
reported by Hidalgo-Céspedes et al. (2016).

VI. SCOPE OF PROGRAM VISUALIZATION REVIEW

We use a systematic literature review approach to provide
an updated list of program visualization tools with regard to
the elements of the notional machine they support, evaluation
method and the 2DET. The review method is based on those
used in reviews carried out by Al-Sakkaf, Omar, & Ahmad
(2019) and Berney & Bétrancourt (2016). It inclues a
description of the search query and databeses searched,
eligibility criteria and overview of the selection process.

Our review includes generic program visualization tools
that represent the execution of a program by the notional
machine, with the intent of providing a learning aid for
novices and teaching aid for teachers in introductory
programming. With regard to the classification provided by
Maletic et al. (2002) (discussed in section III), this defines the
task, target, and audince of the PVs. We do not pose any
restrictions on the representation, but the medium has to be an
electronic device and the visualization available onscreen
(Sorva, Karavirta, et al., 2013).

The search string contains varying terms that refer to PVs.
For instance, sometimes the term "animation" is used instead
of "visualization". Additionally, the term SV was sometimes
used in the past to refer to PVs. We also limited the search to
include only those visualizations that are intended for
education. Our final search string was:

 ("software animation" OR "program animation" OR

"software visualisation" OR "program visualisation" OR

"software visualization" OR "software visualization" OR

"visual debugger") AND (educ* OR teach* OR learn*)

The search covered papers that were published between
2013 and July 2019. We searched the following databases: (1)
Web of Knowledge, (2) ACM Digital Library, (3) Scopus, and
(4) IEEE Xplore. Results of each database were downloaded

 5

and imported into an excel spreadsheet. All papers were
subject to the inclusion/exclusion criteria presented in Table
3. The selection process was done in three stages. First, some
of the papers were excluded based on their title and type. For
instance, we excluded posters, papers records that had only
abstract, and panels. Secondly, the abstract of the remaining
papers was read and assessed for eligilibility. In some cases,
the conclusion was also read and assessed. Finally, the papers
were assessed based on screening their full text. We excluded
papers that presented inactive PV systems that were alrady
reported in other literature reviews, e.g. Evizor (Moons & De
Backer, 2013). The remaining papers are included.

Additionally, our review includes papers that were
identified through scanning the references and citations of
eligible papers, and other sources. However, we kept the
criteria that the paper is published on or after 2013. We refer
to the source of these papers as Other. Fig. 1 depicts the search
process.

The goal of this review is to provide an updated list of PV
tools. A PV tool is included in our list if it is active, available
or has not been included in previous literature reviews. We
consider a PV tool active if there is evidence that the tool is
still being actively developed, maintained or used to publish
new research. Other PV tools are not discussed in this review.

Several active PV systems have been used for research
well before the publication range set up in this paper. To
provide a complete picture of how the systems were evaluated,
we include these papers in our discussion. Most of these have
also been included in previous literature reviews.

In the next section, we will describe new program
visualization tools that have appeared in our search. We will
also discuss their evaluations and results.

VII. PROGRAM VISUALIZATIN SYSTEMS

In this section, we will provide a description of each PV
system and its capabilities. To better structure our review, we
distinguish two types of research papers: 1) system
development, and 2) evaluation. System development papers
are those that refer to the PV system itself, the addition of new
features to it, or development of other systems that extend its

TABLE 3 INCLUSION AND EXCLUSION CRITERIA

capabilities in purposeful new ways beyond visualization.
Evaluation refers to those papers that have evaluated the
visualization aspect provided by a PV system. Therefore, we
will first discuss each PV system and papers related to
development. Afterwards, we review the research related to
their evaluation. Some papers may belong to both types of
papers.

A summary of the tools is presented in tables X and Y. The
tables include information relevant for teachers and
researchers.

It is worth noting that a literature review on student
engagement with SVs was recently published. The review
extracts different theoretical foundations for developing SVs
and proposes several design principles for future SVs. The
review covers the period from 2011 to 2017. However, it does
not provide a review of the results of comparing the
effectivneses of different engagement levels.

The rest of this section is divided into the following
subsections:

A. Legend for tables.

B. Controlled viewing of given content

C. Controlled viewing of own cases

D. Animating own content with no control

E. Controlled viewing of own or modified content

F. Own content with controlled viewing and

responding

G. Applying or creating visualizations of own content

H. Models for program visualization

I. Evaluation of systems

A. Legend for tables

In this section we will describe the legend for Table 4 and
Table 5. Table 4 contains general information about the PV
systems. Table 5 contains more specific information about the
visualization components, engagement level and how the
system was evaluated after 2013. The tables are based on those

Fig. 1 Paper selection process

Figure 1 Paper selection process

Paper selection process

Insertion criteria Exclusion criteria

Paper presents a new generic
PV tool as discussed in this review

Paper presents a specialized or
already reported inactive PV tool

Paper presents an extension of an

existing PV tool

Paper presents a PV tool for a non

general purpose language

Paper evaluates the use of a
generic PV tool

Paper presents a new SV or PV
with a focus on non-introductory

programming or industry

Paper introduces a new taxonomy

for PVs

Paper refers to algorithm

visualization

Paper presents a visual debugger

that is similar to PV tools

discussed in this review

Paper refers to PV tools for static

code analysis

Paper is a literature review on PV Paper refers to other educational
tools that are not PVs as discussed

in this paper

 Paper presents a tool that uses an
existing PV system

 Paper is not a full paper, i.e. poster,

panel, abstract only

 Paper refers to other tools or

techniques for making

visualizations, e.g. libraries

 Paper uses existing PV tool to

propose new methodology

 Full proceedings as they occur as a

record in some database searches

 Paper is not in english

 6

provided in the previous two literature reviews (Hidalgo-
Céspedes et al., 2016; Sorva, Karavirta, et al., 2013).

1) Legend for table 4
System name is the name of the system. In cases where the

system is not named, the authors name is provided. Supported
programming language and programming paradigm contain
the information about the programming language and
paradigm that the systems support. Programming paradigms
are imp for imperative, OO for Object-oriented and func for
functional.

The installation column contains information on how to
install the visualization. Web based visualizations do not
require installation. Systems can have a standalone installation
or as a plugin for NetBeans or Eclipse. Platform mentions on
which platforms the PV system can be installed. If a system is
web based, then the value for platform is web. Most systems
can be installed on all of the major platforms: Linux (L), Mac
(M) and Windows (W).

Most of the PV systems can be obtained via the web. If a
PV system can be obtained this way, the column available
contains the link to the download site. Otherwise, the system
is unavailable or can be obtained in some other way, which is
mentioned in the table. Status refers to our best guess whether
the system is active or inactive. At least since contains the year
in which the system seems to have first appeared, either in
literature or when the first version was released (Sorva,
Karavirta, et al., 2013).

2) Legend for table 5
The Notional machine elements column contains a list of

some of the key notional machine elements that the system
can visually represent. Vars indicates the visualization of
variables, Refs the visualization of references and/or pointers,
Addrs memory addresses, and Objs stands for objects. Classes
means that the system can visualize classes as part of the
runtime, and not just as part of static class diagrams. Struct
refers to any composite data such as arrays, lists, records, etc.
Control refers to the visualization of the active part of the
program at each stage of execution. ExprEv indicates that the
system can visualize the process of expression evaluation
(Sorva, Karavirta, et al., 2013).

Content ownership and direct engagement dimensions
indicate the position of a system on the 2DET. For the content
ownership dimension, only the highest level is listed since
systems supporting own content implies that the system can
also support modified content and others. Given content is
listed only if the system provides a distinct mode for example
given content. For direct engagement, the viewing level is not
explicitly mentioned unless it is the only level supported
(Sorva, Karavirta, et al., 2013).

Step grain indicates the granularity of what gets executed
and visualized at each step. Only the lowest level is listed in
the table. Statement (S) indicates that at each step, an entire
statement or declaration is executed. Expression (E) indicates
that the system supports visualizing expression evaluation in
detail. Message passing (MP) refers to object interactions and
communication between different entities.

Evaluation (≥ 2013) indicates the ways in which the
visualization provided by a PV system was evaluated. Some
studies did not specify that students were novice
programmers, and some explicitly mention that participants
were students enrolled in non-introductory programming

courses. However, we included them if they evaluated the
visualization aspect of a PV system and are relevant for the
discussion of included PV systems. We include only
evaluations published in articles on or after 2013.
Experimental, qualitative and survey evaluations are included.
We describe each of these types of evaluations in section I
(Evaluations). We did not find any anecdotal evaluations
during our literature search.

B. Controlled viewing of given content

Systems in this category allow users to control the
execution of the visualization of given content. These systems
require teachers to prepare the examples in advance and
learners have no control over the visualized content. Only one
new PV system is placed in this category: EDPVE.

EDPVE stands for Example-based dynamic program
visualization. The system supports the visualization of
predefined program examples written in Pascal. It shows the
state of all variables in the program, as well as a flowchart
view of the code. Learners can execute the program line-by-
line, with the current line highlighted both in code and
flowchart windows. The system also provides information on
the line currently being executed. Learners can interact the
visualization only by providing input and viewing output of
the example program. The system is a research prototype
developed for the purpose of conducting a research study
(Tekdal, 2013). To the best of our knowledge, the PV is not
active.

C. Controlled viewing with own cases

The systems discussed in this section allow the user to
control the execution of the visualization and provide their
own input. We have not recognized new systems that fall into
this class. Hence, all systems reviewed were still considered
active in previous literature reviews.

PlanAni is a PV system that supports visualizing the
execution of short programs (Sorva, Karavirta, et al., 2013).
The system visualizes variables and operations with them
based on the variables' roles. Roles are a cognitive concept
derived from the way variables are used. In his study of roles,
Sajaniemi (2002) found that 99% of variables found in novice-
level procedural programs can be classified into nine roles.
For each role, PlanAni uses a specific metaphor for
visualization. For example, a stone is used to visualize a
constant, while a temporary variable is visualized with a
"flashlight that is on as long as the value is used", a stepper is
visualized with footsteps (Jorma Sajaniemi & Kuittinen,
2003).

The visualization metaphors introduced by PlanAni were
later extended to include OO concepts (Jorma Sajaniemi,
Byckling, & Gerdt, 2007). These include metaphors for
classes, objects, object references, method invocation,
parameter passing, return value and garbage collection. The
metaphor-based OO animator is a collection of Flash
animations of predefined examples (Jorma Sajaniemi,
Byckling, & Gerdt, 2006). The learner is able to provide his
own cases (Sorva, Karavirta, et al., 2013).

Both PlanAni and the metaphor-based OO animations
seem to be inactive. Their web sites have not been updated in
over eight years. Although a paper which evaluated the use of
PlanAni was published relatively recently, when considering
other factors, we are unsure if the system should be considered
the system active.

 7

TABLE 4 PV SYSTEMS GENERAL INFORMATION

System name

(or author)

Supported

languages

Prog.

paradigm

Installation Platform Available Status At least

since

1 Grasph/

jGrasp

Java, C, C++,

Objective-C, Ada,

VHDL

imp, OO standalone,

eclipse plugin

M, L, W https://www.jgrasp.org/ active 1996

2 Jeliot 2000/Jeliot
3

Java imp, OO standalone M, L, W http://cs.joensuu.fi/jeliot/ active 2003

3 JIVE Java imp, OO eclipse plugin M, L, W https://cse.buffalo.edu/jive/ active 2002

4 Metaphor-based

OO Visualizer

Java OO flash or swf

player required

Web, M, L,

W

http://saja.kapsi.fi/oo_metaphors/ inactive 2007

5 Online Python
Tutor (OPT)

Python, C/C++,
JavaScript, Ruby,

Typescript, Java

imp, OO not required Web http://pythontutor.com/ active 2010

6 PlanAni Pascal, Java, C,
Python

imp standalone M, L, W http://www.cs.uef.fi/~saja/var_rol
es/planani/index.html

inactive? 2002

7 The Teaching

Machine

C++, Java imp, OO not required Web http://www.theteachingmachine.o

rg/

inactive 2000

8 UUhistle Python imp, OO standalone M, L, W http://www.uuhistle.org/index.ph

p

inactive 2009

9 Ville various imp not required, Web https://ville.utu.fi/ active 2005

10 VIP C++ imp standalone M, L, W http://www.cs.tut.fi/~vip/en/ active 2005

11 WinHIPE Hope func standalone M, L, W http://www.lite.etsii.urjc.es/tools/

winhipe/

active 1998

12 BlueJ Novis Java imp, OO BlueJ M, L, W https://www.bluej.org/ active? 2013

13 FM /TM

Visualization

Language

independent

imp not software Not

software

Not software active 2014

14 JavelinaCode/

JaguarCode

Java imp, OO not required Web http://www.jaguarcode.org/ active 2015

15 Jeliot ConAn Java imp, OO standalone M, L, W http://cs.joensuu.fi/jeliot/ active 2013

16 PROVIT C imp not required web http://cleast.u-

aizu.ac.jp/introduction-0/index-

introduction.html

active 2014

17 SeeC C imp standalone M, L, W https://seec-team.github.io/seec/ inactive? 2013

18 Virtual-C C imp standalone M, L, W https://sites.google.com/site/virtu

alcide/

active 2014

19 EDPVE Pascal imp standalone unknown unavailable inactive 2012

20 JAD Java imp, OO integrated into
Jload

web unavailable active 2017

21 LISN Java, language-

independent

imp standalone unknown unavailable inactive? 2018

22 ObjectVisualizer Java OO standalone unknown unavailable active? 2017

23 Omnicode Python imp not required Web unavailable inactive 2017

24 PandionJ Java imp, OO pre-installed

with Eclipse,

Eclipse plugin

M, L, W http://pandionj.iscte-

iul.pt/installation.html

active 2017

25 PITON/DS-

PITON

Python imp, OO standalone M, L, W ask via email active 2018

26 PVC C imp not required Web https://ryoskate.jp/PlayVisualizer

C.js/

active 2017

27 SunLab Java, pseudo
language

imp standalone Android unavailable active? 2018

28 TEDViT C, C++ imp standalone unknown unavailable active 2015

29 Thonny IDE Python imp, OO standalone M, L, W https://thonny.org/ active 2015

30 (Nagae, Koji) C imp not required Web on request inactive 2013

 included in 2013 review included in 2016 review new systems

 8

TABLE 5 VISUALIZATION AND EVALUATION SPECIFIC DETAILS OF PV SYSTEMS

System name (or

author)

Notional machine elements Content ownership

dimension

Direct engagement

dimension

Evaluation

(≥ 2013)

Step

grain

1 Grasph/jGrasp Control, Vars, Calls, Refs, Objs,

Structs

own content ctrl'd viewing S S

2 Jeliot 2000/Jeliot 3 Control, Vars, ExprEv, Calls, Refs,

Objs, Classes, Structs

own content ctrl'd viewing

[responding]

- E

3 JIVE Control, Vars, Refs, Objs, Classes,

Calls, Structs

own content ctrl'd viewing - S

4 Metaphor-based OO

Visualizer

Control, Vars, ExprEv, Refs, Objs,

Classes, Calls, Structs

own cases ctrl'd viewing - E

5 Online Python Tutor
(OPT)

Control, Vars, Objs, Classes, Refs,
Calls, Structs

own content ctrl'd viewing E, S S

6 PlanAni Control, Vars, ExprEv, Structs own cases ctrl'd viewing E, S E

7 The Teaching Machine Control, Vars, ExprEv, Calls, Addrs,

Refs, Objs, Structs

own content ctrl'd viewing - E

8 UUhistle Control, Vars, ExprEv, Calls, Refs,

Objs, Classes, Structs

own content ctrl'd viewing,

responding,
applying

Q E

9 Ville Control, Vars, Calls, Structs own content ctrl'd viewing,

responding,

applying

S S

10 VIP Control, Vars, ExprEv, Calls, Refs,

Structs

own content ctrl'd viewing Q S

11 WinHIPE Control, Vars, ExprEv, Refs, Calls,
Structs

given content,
own content

ctrl'd viewing,
applying

E, S E

12 BlueJ Novis Control, Vars, Calls, Refs, Objs,
Classes, Structs

own content ctrl'd viewing - S

13 FM/TM Visualization Conceptual spheres [Control, Vars,

Calls]

given content viewing E [E]

14 JavelinaCode/JaguarCode Control, Vars, Objs, Classes, Refs,

Calls, Structs

own content ctrl'd viewing E, S S

15 Jeliot ConAn Control, Vars, ExprEv, Calls, Refs,

Objs, Classes, Structs

own content responding E, S E

16 PROVIT Control, Vars, Calls, Structs own content ctrl'd viewing S S

17 SeeC Control, Vars, ExprEv, Calls, Refs,

Structs

own content ctrl'd viewing - S

18 Virtual-C Control, Vars, Refs, Addrs, Structs own content ctrl'd viewing,
responding

S S

19 EDPVE Control, Vars given content ctrl'd viewing E S

20 JAD Control, Vars, Refs, Objs, Structs own content ctrl'd viewing E, S S

21 LISN Control, Vars own content ctrl'd viewing E S

22 ObjectVisualizer Control, Calls, Refs, Objs own content viewing E MP

23 Omnicode Control, Vars, [Objs, Classes, Refs,
Calls, Structs]

own content ctrl'd viewing Q S

24 PandionJ Control, Vars, Objs, Classes, Refs,
Calls, Structs

own content ctrl'd viewing E S

25 PITON/DS-PITON Control, Vars, Refs, Calls, Structs own content ctrl'd viewing E, S S

26 PVC Control, Vars, Refs, Calls, Addrs,

Structs

own content ctrl'd viewing E, S S

27 SunLab Control, Vars, Calls own content ctrl'd viewing S E

28 TEDViT Control, Vars, Refs, Calls, Addrs,

Structs

modified content,

[own content]

ctrl'd viewing E, S S

29 Thonny IDE Control, Vars, ExprEv, Calls, Addrs
Refs, Objs, Classes, Structs

own content ctrl'd viewing S E

30 (Nagae, Koji) Control, Vars, Calls own content ctrl'd viewing - S

 included in 2013 review included in 2016 review new systems

 9

D. Animating own content with no control

The systems in this category allow learners to animate
their own programs. However, no interaction with the
visualization or its execution is supported. We found one new
system that fits in this category: ObjectVisualizer.

ObjectVisualizer is a system that visualizes the execution
of a program by transforming its source code (Shin, 2018).
The system visualizes the interaction and relationships
between objects in a Java program. It seems to support the
visualization of learners' own content based on the
implementation details provided. However, it does not seem
to provide any engagement above viewing. The visualization
is provided simultaneously as the program is executing. The
system may still be in active development.

E. Controlled viewing of own or modified content

Systems in this category allow the user to visualize their
own programs and control their execution with stepping
and/or play commands. Actually, most PV systems support
these levels of the 2DET. Because there are many such
systems, we group them based on their support for different
programming languages: 1) PV systems for C/C++, 2) PV
systems for Java, 3) PV systems for Python, and 4) multi-
language PV systems.

1) PV systems for C/C++
PROVIT is a PV system for visualizing C programs (Yu

Yan, Hiroto, Kohei, Shota, & He, 2014). It can visualize
variable values and function calls. Variables are represented
with a box that includes its data type, name and value. A
variable's visualization is highlighted in blue if the next
statement refers to that variable, and in red if the next
statement will change its value. During execution, lines of
code that are already executed are underlined in blue, and the
next statement is underlined with red. PROVIT was initially
developed as a desktop application, with a web version created
later (Y. Yan, Nakano, Hara, Kazuma, & He, 2016). The
visualizations provided by the web version can be embedded
into a PowerPoint presentation.

PROVIT-CI is an extension of PROVIT for instructors
(YAN, HARA, KAZUMA, HISADA, & HE, 2018). It
provides some functionalities convenient for the classroom,
such as generating a PROVIT URL for a given example. The
user just needs to upload the example source code and input
data. PROVIT-CI also extends PROVIT by providing a new
array viewer and visualization of return values.

PlayVisualizerC (PVC) is a web-based PV system for the
C programming language. It executes programs at the
instruction level and highlights the current line in program
execution and provides visualizations for variables and stack
frames. PVC supports detailed visualization of dynamically
allocated memory, file and standard I/O (Ishizue, Sakamoto,
Washizaki, & Fukazawa, 2018).

SeeC is a PV system for the C programming language built
upon the Clang project (“Clang C Language Family Frontend
for LLVM,” n.d.; Egan & McDonald, 2014). It visualizes
program execution as a graph, which contains a node for each
active function call. Two types of arrows are used, a blue
dashed arrow to connect the calling function with the called
function, and a black arrow for pointers. A node contains the
name of the function and variable values.

The system can automatically generate explanations that
are linked to relevant pieces of code (Egan & McDonald,
2014). When a user's mouse cursor hovers over part of the
explanation, the system highlights the corresponding piece of
code. The explanations may also reference external materials
via URL.

SeeC's dynamic evaluation tree visualizes the execution of
a statement at the expression level (Egan & McDonald, 2015).
The statement is visualized at the top of the tree, with
evaluation steps lower in the tree, and the final result at the
bottom. The values that are produced by an evaluation step are
placed directly below the expressions that produced them. The
system also checks for errors typically made by students
before an instruction is executed (Egan & McDonald, 2013).

SeeC also allows a rich set of ways to move through the
visualization. Users can choose to move to a point before or
after a value in memory changes, and to the beginning or end
of a function call, to name a few (“SeeC,” n.d.).

TEDViT was initially developed for teaching algorithms,
such as sorting (Yamashita et al., 2015). However, the visual
representations it provides place it in scope of this review.
TEDViT's visualization interface can be divided into two
parts. In one part, the memory state of all variables is shown.
The authors refer to the second one as "target domain world".
The system allows teachers to configure how certain
components visualized in the target domain world should be
represented. For example, teachers can define whether arrays
should be visualized horizontally or vertically. The
configuration can be specified via set of rules (T-Rule sets),
which in turn can be defined through a separate GUI based
system (Tezuka et al., 2016). In the initial version, these rules
significantly limited learner's engagement with the visualized
content. However, they were later changed to allow for more
flexibility (Yamashita et al., 2018). The authors claim that
learner's own content can be visualized. However, in their
study they gave students source code with predefined variable
names to match the configured rules. It is unclear how the
target domain world behaves if the names do not match.

The system also visualizes the flow of data between
functions (Yamamoto et al., 2017). For recursive functions,
learners can choose to observe it as a black box. The system
then skips visualizing the behavior of the recursive functions.
Learners can also choose to view the behavior of the recursive
function for an arbitrary number of recursive calls. Once they
wish to stop, a function call that satisfies the termination
condition is shown.

The authors also extended TEDViT so that it can visualize
the states of a program at two different execution steps (Ihara
et al., 2017), which might help learners understand how
algorithms work by comparing the state of the program at two
different points in time. The system can also visualize the
execution of two different programs side-by-side. The
rationale for this decision was to allow learners to compare 1)
two programs with different data in order to understand
program behavior independent of data, or 2) two different
programs, e.g. programs with correct and incorrect behavior.

The Teaching Machine is a web-based PV system that can
visualize the execution of C++ and Java programs (M. P.
Bruce-Lockhart & Norvell, 2007). The system's expression
engine supports visualizing expression evaluation in detail
(M. P. Bruce-Lockhart & Norvell, 2000). It also allows the
learner to step through an expression in a single step and an

 10

unlimited undo facility to step back through some part of the
execution. The state of heap and stack memory is also
represented. A special linked view visualizes the relationship
between data in the stack and heap. The view is suitable for
visualizing data structures in an advanced programming
course (M. P. Bruce-Lockhart & Norvell, 2000). A later
version of the teaching machine also has the ability to generate
quizzes on algorithms at a high level of abstraction (M. Bruce-
Lockhart, Crescenzi, & Norvell, 2009; Sorva, Karavirta, et al.,
2013). This capability places the system on the responding
level of the engagement taxonomy. However, because the
quizzes are on algorithms, the highest engagement level
supported for introductory programming is controlled
viewing. The system was not used in recent publications and
does not seem to have gotten an update in quite some time.

VIP is a PV system that supports the visualization of a
subset of the C++ language (Isohanni & Knobelsdorf, 2013).
The system is based on the Clip interpreter (“CLIP,” n.d.). It
visualizes variable values and highlights them as they change.
Whenever the system executes an expression, it shows the
values of operands, operators and the resulting
subexpressions. Teachers can also prepare examples that will
be shown during execution.

Nagae & Kagawa (2014) introduced a prototype visual
debugger for the C programming language. However, the
system's interface is in Japanese. It can visualize call stacks,
bitwise operations and variables. It allows teachers to specify
alternative representations of visualization components. The
system seems to be developed purely as a research prototype
and is no longer maintained.

2) PV systems for Java
BlueJ Novis is an extension of the BlueJ IDE for providing

a visualization of the notional machine (M. Berry & Kölling,
2016; Michael Berry & Kölling, 2013, 2014). It supports the
visualization of Java programs at different levels of detail. At
the highest level of detail, the system visualizes all object
fields, method call chains, and parameter and return value
passing. Lower detail levels show objects in a simplified view
with references to other objects and method invocations. The
lowest detail level shows a heatmap which displays object
activity. A step in Novis is a method call or return. However,
it supports statement level step granularity via BlueJ
debugger. Novis does not seem to be included in the
downloadable version of BlueJ, therefore we are unsure if it's
still active. We did not find any papers that evaluated BlueJ
Novis.

JAD is a visual debugger for Java designed to assist deaf
and hearing-impaired (DHI) students (Nascimento et al.,
2017). Despite its focus on DHI students, it might be used in
introductory programming courses. JAD is embedded in
JLoad, a Java e-learning object for the deaf, which is
embedded in a learning platform (Silva, Oliveira, Oliveira, &
Freitas, 2014). JAD provides controlled execution and can
visualize variables. The system also provides sign language
explanations for error messages (Nascimento et al., 2017).

JaguarCode, formerly known as JavelinaCode is a web-
based PV system for Java (Jeong Yang, Young Lee, & Hicks,
2016; J. Yang, Lee, & Chang, 2017). JaguarCode provides
both static and dynamic visualization for OO programs
(Earwood, Jeong Yang, & Young Lee, 2016). Static
visualization provides three sets of UML class diagrams (J.
Yang, Lee, Hicks, & Chang, 2015). One for the active Java

program, one compact that shows the relationship between
classes in the project, and a detailed diagram with all project
information. The system supports adding new files to an active
project. JaguarCode also seems to be able to generate object
and sequence UML diagrams (J. Yang, Lee, Gandhi, & Valli,
2017).

When a line of code is executed, its corresponding class in
the UML class diagrams is highlighted. JaguarCode can
visualize variable values, function calls, objects and their
instance variables. Learners can step forward and backwards
through program execution. Stepping through is at the
statement level. The system is still under development and is
currently available only to authorized users. Future plans for
JaguarCode development are discussed by Yang et al. (2017).

Jeliot 3 is the culmination of years of research that started
with Eliot (Sorva, Karavirta, et al., 2013). It is one of the most
well-known and researched family of PV systems. Its
predecessors include Eliot, Jeliot I and Jeliot 2000 (Ben-Ari et
al., 2011; Haajanen et al., 1997; S.- Lahtinen, Sutinen, Tarhio,
& Tuovinen, 1997; Levy, Ben-Ari, & Uronen, 2003). Each
system attempted to improve on the one before. The first
system, Eliot, visualized variables of C programs. Jeliot was a
proof of concept web-based visualization system that
visualized Java programs. However, it had a GUI that was too
complex for beginner programmers. Jeliot 2000 introduced a
simpler interface and more complete animations.

Jeliot 3 added the ability to visualize classes and objects
(Moreno, Myller, Sutinen, & Ben-Ari, 2004; Sorva, Karavirta,
et al., 2013). The visualization area is divided into four areas
for visualization components of different type. Jeliot 3
supports visualizing a large subset of the Java language.
Surprisingly, as opposed to many other PV systems, Jeliot 3
does not support stepping back through the program. The
system visualizes control, variables, expression evaluation,
method calls, references, objects, classes and various structs.
mJeliot is a tool that allows learners to answer questions about
the visualization on their mobile phones (Pears & Rogalli,
2011). Learners also receive feedback about their response.
mJeliot may alleviate Jeliot 3 to the responding level of the
direct engagement dimension.

jGrasp is a lightweight development environment that
provides various visualizations for several programming
languages (“JGRASP Home Page,” n.d.), including C++ and
Java. It can visualize variables, arrays, and objects and their
states. The system provides viewers that can display an object
at different levels of abstraction (Hendrix, Cross, & Barowski,
2004). Higher-level viewers are more appropriate for learning
about data structures, such as linked lists and trees. The object
viewer provides a lower-level view of an object's state.

Version 2.0 of jGrasp introduced the new viewer canvases
(Cross, Hendrix, Barowski, & Umphress, 2014). Learners can
play the viewer canvas in order to auto-step, i.e. animate, the
execution. The learner can choose additional details for a
viewer, such as array indices, and host multiple viewers in a
single canvas. For example, in case of learning how a sorting
algorithm works, the learner can add an array viewer and a bar
graph viewer in a single canvas, which allows multiple
visualizations of the algorithm.

JIVE is an interactive environment suitable for novice-
level programs and larger object-oriented and multithreaded
programs (Sorva, Karavirta, et al., 2013). It is developed as an
Eclipse plugin and provides multiple views of execution,

 11

including object and sequence diagrams (P. Gestwicki &
Jayaraman, 2005; P. V. Gestwicki, 2004). Both of these
diagrams can be shown in a detailed and compact view. The
system also provides a call-path view which provides a
compact visualization of a series of method activations.

Recent research with JIVE has dealt with compacting the
visualization of sequence diagrams (Jayaraman, Jayaraman, &
Lessa, 2017) and the introduction of state diagrams (Ziarek,
Jayaraman, Lessa, & Swaminathan, 2016). Jayaraman,
Jayaraman, & Lessa have (2017) introduced horizontal,
vertical and hybrid techniques for compacting sequence
diagrams and compaction techniques of the execution of
multi-threaded programs with different forms of interaction.
State diagrams were introduced in order to provide a more
concise way to visualize execution and state information
(Ziarek et al., 2016). The system also can also check the
consistency between a runtime and design-time provided state
diagram. The consistency check does not test for equality.
JIVE highlights states and transitions in the runtime state
diagram that are not included in the design-time diagram,
which may point to possible bugs in implementation.

PandionJ is a visual pedagogical debugger for Java
(Santos & Sousa, 2017). The system offers control commands
typical for debuggers, such as step in, step out, step over,
resume, and stop execution. It can visualize class, objects,
variables, structs, and control (Santos, 2018). PandionJ also
allows learners to interact with visualized objects and invoke
their public methods. One of the goals of the system is to
somewhat mimic the way teachers might draw visualizations
of variables. Therefore, the system analyzes the user's code in
order to assign certain roles to some variables.

PandionJ offers a widget extension that allows alternative
visualization for primitive values, arrays and objects (Santos,
2018). To use alternative visualizations, called widgets, of
primitive values and arrays, the user needs to annotate their
declaration with the appropriate tag. The system can
automatically associate an object type with a widget.

SunLab is a PV system for Android smartphones. The
initial version supported the visualization of Java programs
but has since changed to a pseudo language Dynamic program
visualization on android smartphones for novice Java
programmers (E. Kumalija, Yi, & Fatih, 2018). It supports the
visualization of variables, function calls and expression
evaluation. The system can also interact with smartphone
sensors (E. J. Kumalija, Fatih, & Sun, 2019).

3) PV systems for Python
CodeSkulptor is a web-based programming environment

for Python. I was developed a massive open online course
(MOOC). The system incorporates OPT's visualization
capabilities. However, OPT does not seem to support event-
driven GUI programs, whereas CodeSkulptor does. Certain
types of events may be automatically triggered numerous
times which may be difficult to visualize. To remedy this,
when CodeSkulptor detects events, such as draw and ticks, it
adds buttons that will allow the user to manually trigger them
(Tang, Rixner, & Warren, 2014),

Omnicode is a prototype IDE built upon Online Python
Tutor (OPT). Omnicode is live, which means that any changes
to the code are automatically visualized. The system uses
scatter plots to visualize the entire history values of numeric
variables. The visualization is limited in this regard. However,
the system does take advantage of being built upon OPT. After

a user selects a line of code, a detailed visualization is
provided. Users can also create their own scatterplots to
display visualizations of other meaningful numeric values,
e.g. length of a list (Kang & Guo, 2017). Omnicode was a
graduate project that is not being actively developed or used.

PITON is an IDE for Python that combines PV and
programming workspace (Elvina, Karnalim, Ayub, &
Wijanto, 2018). It combines features of Online Python Tutor
(Philip J. Guo, 2013) and PyCharm (“PyCharm,” n.d.). Major
features taken from OPT are visualization of step-by-step
execution, variable visualization, and control highlighting.
Minor features that enhance the usability of the system are
also implemented, such as highlighting variables whose value
changes and simplified errored messages, PITON also
provides different mechanisms for providing program input.
The classic mechanism which accepts input when the
corresponding input instruction is executed. The second and
third mechanisms allow the user to provide all inputs before
the code is executed, one of which accepts inputs from a file.
Major PyCharm features added to PITON include compile &
run, source code highlighting and file manipulation. Programs
in PITON may be run without invoking the visualization.

DS-PITON is an extension of PITON which includes an
AV tool (Nathasya, Karnalim, & Ayub, 2019). The extended
system can visualize seven different data structures in its data
structure display. The display can show multiple data
structures simultaneously. The system can also show the code
implementing the data structures and visualize the execution
of their methods.

Thonny is another IDE for that supports the visualization
of Python programs. The system supports stepping into and
over program statements. When the learner steps over a
statement, Thonny executes the whole statement. In case the
learner decides to step into a statement, Thonny highlights the
first child of the statement, if there is one. Stepping into also
enables users to evaluate expressions step-by-step. Function
execution is visualized in its own window with its own stack
frame. Heap values are represented with an ID, which when
selected shows the values associated with it. The system also
logs user activities in a file, which enables the reproduction of
user actions and program construction (Annamaa, 2015).

4) PV systems that support multiple languages
Online Python Tutor (OPT) is another long-lived and

popular PV system (Philip J. Guo, 2013). It supports the
visualization of programs several programming languages,
including Python and Java. OPT is a web-based system whose
visualizations can be embedded into other web pages. It
supports visualizations at the statement level. Over the years,
additional systems have been built on top of or based on OPT.
Systems that were built on top of OPT include Codepourri,
Codechella, and OPT+Graph. Others that were based on OPT
include TraceDiff and a system introduced by Azadmanesh
and Hauswirth.

Codepourri is a tool that enables users to annotate source
code to create tutorials (Gordon & Guo, 2015). These tutorials
are embeddable into other web pages. Annotations can be
created at each step of the execution. Users can also see
annotations left by others and vote on the best one.

Codechella is a system embedded with OPT that allows
collaborative learning (P. J. Guo, White, & Zanelatto, 2015).
Users can start shared sessions and join via a generated URL.
All members of a session see the same programming code and

 12

visualization. These are kept synchronized, regardless of
which member edits the code or advances the visualization.
Members can also see each other's mouse pointers. The system
also provides a joined chat for all session members.

OPT+Graph is a tool based on OPT for visualizing graph
data structures in C (Dien & Asnar, 2018). The tool supports
bar graph, list and tree representations.

Azadmanesh and Hauswirth (2017) introduced a system
based on OPT that provides more information about statement
execution and intuitive code explanations. They changed the
backend of OPT and modified its frontend. The system
supports visualization of Java programs. It visualizes
expression evaluation in a tree-like structure. Their
visualization retains the information about the order in which
expressions are executed and shows the intermediate and final
values of evaluation. Values presented lower in the structure
are fetched and evaluated first, and the final result is on top.
Each step is accompanied by a spoken explanation provided
by a JavaScript speech Synthesizer.

TraceDiff is a tool based on OPT that highlights the
difference in the execution of a programs actual and expected
behavior (Suzuki et al., 2017). A learner submits a program to
the TraceDiff system, which identifies potential corrections
and synthesizes a correct program. The system extracts the
differences between the two and highlights them on the user
interface.

LISN is a language-independent PV system. It was
primarily developed as a prototype to introduce and
demonstrate an embedding technique for language-
independent PV tools. To use the system, the educator needs
to provide the target source code and two feature sets. The first
feature set is related to the programming language, and the
second to the source code itself. The programming language
feature set includes the run and compile commands, input,
output, state, and executable file names. The source code
feature set contains the source code, and library import, file
writer invocation and file writer declaration instructions
(Sulistiani & Karnalim, 2018).

Hence, in case a programming language or source code
change, one or both new feature sets need to be provided
(Sulistiani & Karnalim, 2018). The system operates in three
phases. In the first phase, the source code is embedded with
library import instructions, file-writer declaration instructions
and file writer-invocation instructions. The source code,
embedded source code, run, and compile commands are then
passed to the second phase which compiles and runs the code.
It also generates a file containing the visualization states. The
states file is then passed to the visualization phase that
visualizes it. The system can visualize control and variable
states. It is currently not being further developed.

F. Own content with controlled viewing and responding

The systems in this section provide the user the freedom
to step through the execution, and possibly answer questions
about the visualization.

Jeliot ConAn is a version of Jeliot 3 that produces
conflictive animations (Moreno, Sutinen, & Joy, 2014). These
animations include incorrect visualizations of certain steps
(Hidalgo-Céspedes et al., 2016; Moreno, Sutinen, Bednarik,
& Myller, 2007). Their purpose is to keep the learner in a state
of cognitive conflict for the duration of the visualization. The

learner needs to actively think about what he sees and respond
when he believes an incorrect visualization occurred.

Moreno et al. (2013) proposed a game concept based on
conflictive animations. In their proposed concept, students
should use a PV system to create conflictive animations and
challenge their peers to find the conflict. The students creating
the conflictive animations will have to identify the concepts
he had most problems with. Students should use a separate
system for the resolution of conflicts, which would also be
used a repository for the animations. The peers reviewing the
animation need to find the step of the conflict and identify the
concept that was incorrectly animated. Students would be
awarded points if they correctly solved the conflicts. There is
a possibility to have correct animations in which case students
should indicate that the animation is correct.

Virtual-C IDE is an educational development environment
for the C programming language (D. Pawelczak & Baumann,
2014). Variables are visualized in memory blocks with colors
corresponding to the type of memory. Plugins for Virtual-C
can be implemented with JavaScript. An example of a plugin
that visualizes data structures is given by the authors (see
Pawelczak & Baumann [2014]).

The system provides a testing framework (TF) that enables
teachers to create tests that evaluate users' knowledge (D.
Pawelczak & Baumann, 2014). It also provides static and
dynamic tests for user code (Dieter Pawelczak, Baumann, &
Schmudde, 2015). An example of a static test is to check
whether a function is correctly invoked. Dynamic tests include
I/O, performance and function tests, which are predefined.
The teacher can also write assertion and expectation tests. A
test suite file needs to be provided for the generation of test
cases.

G. Applying or creating visualizations of own content

In this section, we cover systems that support engagement
similar to visual program simulation. The exception is
WinHIPE, which allows learners to configure animations
themselves.

UUhistle is a well-known PV system for visualizing
Python programs (Sorva & Sirkia, 2010). The system supports
visualizing own content and provides an explanation of what
is happening with the visualization for each step. The learner
can step through the execution in expression or step level. It
also provides a visual program simulation (VPS) mode of
execution. In VPS, the learner manipulates the visualization to
execute the program with a mouse. The learner is required to
execute each instruction in the appropriate order and use and
allocate program memory. The system also allows learners to
make mistakes and gives feedback on them.

UUhistle is currently not being actively supported or
developed as noted on its website. We are not aware if it is
used in teaching. Therefore, we assume it is inactive.
Additionally, two successor systems for UUhistle, Jsvee and
Kelmu, have been introduced (Sirkiä, 2016). Jsvee is a
language angostic library for program visualizations. It can
assist educators with creating visualizations of the notional
machine. Kelmu is a toolkit for augmenting generated
animations with additional elements, such as textual
explanations. However, these systems are out of scope of this
review. We refer the interested reader to Sirkiä & Sorva
(2015), Sirkiä (2016) and Hosseini et al. (2016) for additional
information.

 13

Ville started out as a PV system with support for multiple
programming languages, including Java and Python (Laakso,
Kaila, & Rajala, 2018). The new version of Ville is a
collaborative learning platform. We are only interested in its
visualization aspect for this paper.

In earlier versions, the teacher needed to provide examples
which could then be modified by the user (Kaila, Rajala,
Laakso, & Salakoski, 2008; Sorva, Karavirta, et al., 2013).
However, a recent paper suggests that learners can write full
programs. The teacher only needs to create the appropriate
exercise (Laakso et al., 2018).

Ville supports multiple types of automatically assessed
exercises for programming and provides an interface for
implementing new ones in Java. Users may be required to
write programs or modify existing ones. Teachers can add
popup questions to example programs, which will appear at
certain steps in the visualization (Kaila et al., 2008). Students
may be given a shuffled program, which they are required to
re-arrange to produce a working solution. Another type of
exercise engages students in simulating the execution of a
program. The system provides certain components which
students use to manually execute certain aspects of a program
(Laakso et al., 2018; Sorva, Karavirta, et al., 2013).

The visualization can be viewed in a step-like fashion or
animated with adjustable speed. Ville supports the
visualization of function calls and variables. It offers a parallel
mode which visualizes two different programming languages
simultaneously. Users can add support for new programming
languages via built-in syntax editor (Kaila et al., 2008).

WinHipe is an IDE that supports the visualization of the
functional programming language HOPE. The IDE is based
on term rewriting, an evaluation model of functional
programming. In one control step, the users can evaluate the
entire expression, perform n rewrite terms or evaluate a
reducible expression. Users can also construct animations
using WinHIPE. The user types in and evaluates an expression
by using the actions he believes are most appropriate, which
generates a set of visualizations. He then selects the
visualizations that will be used in the animation. The
animations can be played in WinHIPE or used to generate a
web page along with the source code and descriptions (Pareja-
Flores, Urquiza-Fuentes, & Velázquez-Iturbide, 2007). The
system's facility to construct program animations can also be
used by students. Students can be given a problem and the
solution source code, and required to provide suitable input
data, choose the most appropriate visualization steps and write
a description of the solution. Therefore, WinHIPE may be
placed on the applying level of the direct engagement
dimension (Sorva, Karavirta, et al., 2013; Urquiza-Fuentes &
Velázquez-Iturbide, 2012).

H. Models for program visualization

Here we include models that were introduced for PV.
These have not been implemented as a software system. There
is currently only a single model that falls to this category.

TM Visualization, previously called FM Visualization, is a
visualization model for describing the structure of a system
(Al-Fedaghi & Alrashed, 2014; AlFedaghi, 2019). It has not
yet been implemented into any PV system. The model
describes a system in terms of components and flows.
Components are organized into conceptual spheres, which
may intersect with or encompass other spheres. The model

was introduced to include various software and hardware
aspects of program execution that are most often ignored in
PVs. Depending on the program, the visualization may
include different conceptual spheres, e.g. arithmetic logic unit
(ALU) if the program executes an arithmetic operation.
Statements themselves are represented with conceptual
spheres (Al-Fedaghi & Alrashed, 2014). The information in
tables X and Y is based on the examples of C++ programs
provided by Al-Fedaghi & Alrashed (2014). As opposed to
other visualizations, TM visualization seems to show the
entire execution process as a graph, at least for some
programs.

The model can be used to describe other types of systems,
not just programs. Some examples include a half-adder,
vending machine, and a water phase diagram (Al-Fedaghi &
Sultan, 2017).

If a hypothetical system were to implement TM
visualization, we believe that its step grain would be similar
to that of expression evaluation. Since expression evaluation
contains subexpression that may also have subexpressions,
this would correspond to spheres which contain other spheres.
Higher levels of step grain may be supported as n flow/sphere
steps, which would be similar to WinHIPE's n rewrite terms
(Pareja-Flores et al., 2007).

I. Evaluations

Many of the PV systems discussed in the previous sections
were evaluated to collect student feedback on the system or
evaluate their effectiveness on student learning. In this
section, we review the publications identified through our
literature search that evaluate the effect of visualization on
learning to program. We do not consider evaluations of other
aspects of a PV system.

We include experimental, qualitative, anecdotal and
survey evaluations. Experimental evaluations may include
quasi-experiments or experiments with quantitative data. We
have a special interest in evaluations regarding different levels
of engagement taxonomies. Qualitative evaluations are those
that refer to rigorous qualitative research methods. Anecdotal
evaluations are basically the experiences a user had when
using the system. Surveys are studies that produced
descriptive statistics or collected data from user feedback. We
consider experiments that do not compute a statistical
significance between groups as surveys.

The section is organized into the following subsections:

1) Experimental and survey evaluations

2) Qualitative evaluations

3) Survey evaluations

1) Experimental and survey evaluations
This section contains a review of the publications which

evaluated program visualizations either via experiment or
survey. The two types of evaluations are combined in one
section because many experimental studies are followed-up
on by feedback questionnaires. Keeping such studies together
in a single section should improve readability of our paper.

EDPVE
EDPVE was used in an experiment to compare the

effectiveness of static and dynamic program visualizations. A
complementary system called example-based static program
visualization environment (ESPVE) was used for comparison.
The systems supported only a flowchart view, variables and

 14

source code, which could not be animated. In fact, the user
could not have any interaction with the program. Also, as
opposed to EDPVE, the system does not provide information
about the current instruction being executed. Both systems
were used as support for traditional teaching methods (Tekdal,
2013).

The authors used a test that included the following subject
areas: variables, control statements, loops and arrays. They
report a statistically significant difference in favor of using
dynamic program visualizations on the overall test.
Additionally, they divided the test items into three subtests:
control statements, loop statements, and array statements. For
each subcategory, they report a statistically significant
difference favoring dynamic program visualizations (Tekdal,
2013).

A delayed was used to assess student retention. The results
of the posttest and delayed test showed no statistically
significant difference for either group. The result indicates that
the type of visualization does not affect retention. However, it
is unclear whether the delayed test was the same as posttest,
which seems to be the case. If this is correct, then there is a
possibility that students have remembered (some of) the
answers (Tekdal, 2013).

It is unclear whether the level of content ownership might
have affected the results. The authors note that the systems
were used merely as support. However, we need to ask
ourselves if the group using static visualization would have
interacted more with the system if it supported own cases, or
a higher level on the content ownership dimension. A higher
content ownership dimension might have prompted students
to explore the static visualization more. One might argue that
providing own cases to a static visualization is irrelevant.
Given that the variables were visualized in both systems, we
believe it might lead to a higher degree of interaction.

JAD
JAD was used in a study to compare the effectiveness of

its visual debugger for learning programming in a basic Java
course. The study compared the performance of DHI and non-
DHI students to fix bugs in two Java classes. Three
performance metrics were used: time to complete task,
completion of all tasks, and number of times the student asked
the instructor for help. The p-values showed no statistically
significant difference between DHI and non-DHI students on
all metrics. However, the study was conducted on only 10
students (5 DHI and 5 non-DHI) (Nascimento et al., 2017).

JAD was qualitatively evaluated by DHI and non-DHI
students. However, we consider this a survey, since the
theoretical framework and detailed results for the qualitative
evaluation were not provided in the publication. In general,
the study reports that DHI students found the tool more
appropriate than other tools, and was intuitive, simple, and
helped with debugging (Nascimento et al., 2017).

JaguarCode
JaguarCode's (formerly JavelinaCode) effectiveness

towards helping students comprehend two given projects was
evaluated in two controlled experiments. Both experiments
had the same two projects, a single control group and an
experimental group. Both experiments evaluated students'
response times and correctness of solutions to given questions.
The time it took to answer each question was recorded (J.
Yang, Lee, & Chang, 2017; Jeong-sug Yang, 2016).

In each experiment, the control group had no
visualizations, and the experimental group used JaguarCode
(JavelinaCode at the time). In both experiments and for both
projects, students' in the experimental group took longer to
answer the questions. A statistically significant difference was
found in the harder of the two projects. Regarding the
correctness of solutions, in all experiments and projects, the
results favored the experimental group. Statistically
significant difference in the first experiment was found for the
easier project, and for both projects in the second experiment.
The authors concluded that using JaguarCode improved
student performance on questions regarding tracing and
program understanding. The higher response time for the
harder questions might be the result of students using the
visualization to improve the accuracy of their answers. The
experiment might be considered a comparison of different
engagement levels: no viewing vs viewing for program
understanding and tracing (J. Yang, Lee, & Chang, 2017).

In addition to the experiment itself, the authors evaluated
the system's usability and visualization with two
questionnaires. Results of ow that students were generally
satisfied with both static and dynamic visualizations provided
by JaguarCode. Some participants also suggested certain
improvements, such as multi-language support, increasing the
execution speed and better feedback on errors (J. Yang, Lee,
& Chang, 2017; Jeong-sug Yang, 2016).

An experiment by Yang et al. (2017) investigated if
JaguarCode's run-time visualization helped students to
understand OO concepts and if generated UML diagrams
assisted users with interpreting their program's behavior. The
published article reports only on the feedback collected via
questionnaire. The study reported positive feedback on the
system's usability and visualizations. In general, most
participants agreed that the generated UML diagrams helped
them with program comprehension. Most of them reported
that the class diagram helped them the most with
understanding the program, followed by the sequence
diagram. The participants also reported that JaguarCode is
useful for beginners to learn java programs and the visual
diagrams were helpful (J. Yang, Lee, Gandhi, et al., 2017).

Codeeasy (Jeliot 3)
Eranki & Moudgalya (2013) used Codeeasy, a tool built

on Jeliot 3 to investigate the effect of a PV system in spoken
tutorial workshops. The study included four groups in total.
Two groups, one control and one experimental, learnt Java,
and the others learnt C++. All groups watched spoken
tutorials, while only experimental groups used the Codeeasy.
The authors found a statistically significant difference for
learning programming competencies in favor of PVs. Program
comprehension and debugging skills were significantly
improved for the experimental group. The same participants
also demonstrated better performance concept-wise.

Jeliot ConAn
Moreno et al. (2014) carried out an experiment to compare

the effectiveness of Jeliot ConAn (conflictive animations,
experimental group) and Jeliot 3 (normal animations, control
group). The study evaluated conflictive animations related to
function calls.

Results of the study showed that Jeliot ConAn had an
impact on students, and they slightly improved their score in
the post-test relative to the pre-test. However, no statistically
significant difference was found between the control and

 15

experimental groups. The authors believe that this might be
due to the small number of participants (N = 18) (Moreno et
al., 2014). Apart from evaluating conflictive animations, an
impact on study learning may have been caused by the
difference in engagement levels of the two systems,
responding vs. controlled viewing.

An additional graphical questionnaire was used to evaluate
students understanding of animations and concepts in them. A
correlation between the graphical questionnaire and students
prior programming knowledge was found for both groups. In
the graphical questionnaire, the control group obtained a
higher average score (control group = 6.82, experimental
group = 4.82). The authors reported that some explanations
from the control group indicated that they had a better
understanding of the visualized concepts than the
experimental group (Moreno et al., 2014).

Moreno et al. (2014) also collected student feedback about
Jeliot ConAn and Jeliot 3. In general, twice as more students
in the control group reported that Jeliot 3 helped them
understand Java programs than in the experimental group.
Both tools were not hard to use, while the control group
wished they used the Jeliot 3 in more debugging exercises.

ObjectVsualizer
ObjectVsualizer was evaluated in two experiments, one of

which focused on debugging, and the other on extending
functionality tasks. Both experiments featured a control (no
visualization) and experimental group (visualization). In both
experiments, students that used the visualization obtained
higher scores in average. However, only the first experiment
showed statistical significance between the groups. These
results indicate that the use of visualization might not have a
significant impact on understanding simpler programs (Shin,
2018). This study may also be considered as no viewing vs.
viewing in the engagement taxonomy.

Online Python Tutor
Karnalim & Ayub (2017a) carried out an experiment on

Online Python Tutor's effectiveness in an introductory
programming course. They included two classes in the study
which alternately used OPT, except for the fifth (both did not
use OPT) and sixth week (both used OPT). The study included
both quiz and questionnaire. The results of the questionnaire
showed that OPT is a promising PV system for learning
introductory programming and students would like to use it
more laboratory sessions. Quiz and questionnaire results both
showed that OPT has a positive impact on doing basic
programming sub-task, such as understanding program flow.
For more advanced topics, which were also evaluated with
quiz and questionnaire, the visualization had a positive impact
on learning functions, while it did not have such an impact on
arrays.

Karnalim & Ayub (2017b) also conducted a survey to
collect feedback on students' perspectives of OPT. The
participants were divided into two groups that used OPT for
14 weeks alternately, one group used it in odd weeks, and the
other in even weeks. The feedback is generally positive.
Students believe that OPT can help in finding errors and
understand how their code works. However, students need
time to adapt to using the system and slow internet connection
may discourage its use.

Karnalim & Ayub (2018) also carried out a quasi-
experiment to evaluate Online Python Tutor's effectiveness
for learning data structures. The experiment was carried out in

14 lecture weeks, with one group being the experimental
group for odd weeks, and the other for even weeks. The
control group for that week did not use visualizations. The
authors carried out comparisons between intervened and non-
intervened sessions within the same group. Results showed
statistically significant difference, for one group a positive
correlation, and for one negative. The authors assume that this
discrepancy occurred because OPT's UI is not intuitive. They
assume that the group with the positive correlation had prior
experience with OPT. Authors also compared the
corresponding sessions of the same week between groups.
Statistically significant difference was shown in the first week,
which favored the control group, and the twelfth, which
favored the intervened group. These results are probably
related to the adaptation time required to get used to OPT's UI
and visualization. The authors conclude that OPT might be an
effective learning tool if the students have a chance to use it.

Thayer, Guo, & Reinecke (2018) studied the correlation
between the users back-stepping through the visualization and
their cultural levels of self-centered learning. They took into
account the Power Distance Index (PDI) and Conservation,
which measure instructor-directed learning. A higher PDI
indicates that a country's educational system is centered
around the authority ("teacher-centered education"), and a
lower that it is centered around the student ("student-centered
education"). Conservation is a measure of how much the
student values tradition. They carried out two studies and
showed that OPT did not benefit students from all cultures
equally. Their first study, that focused on country-level PDI,
showed that students from cultures that have a lower PDI will
take more back-steps. Their second study investigated how
culture affects back-steps, and personal values and back-steps
affect debugging success. The study found 1) only marginal
negative correlation with Conservation, 2) the number of
back-steps was negatively correlated with debugging success,
and 3) for instructor-centered learners, many back-steps meant
lower debugging success, and for student-centered learners
the correlation was lower.

PandionJ
PandionJ was used in a course offering of 2017/2018 for

12 weeks. The pass-rate of the course was compared to the
pass-rate of three prior years when AguiaJ was used
(“AguiaJ,” n.d.). The results showed statistically significant
improvements in course pass-rate compared to each of the
three prior years (Santos, 2018).

PITON
Elvina et al. (2018) evaluated PITON in two studies, one

with lecturer assistants and one with students. Both lecturer
assistants and students provided feedback. Feedback from the
first study was mostly positive. Lecturer assistants believe that
the step-by-step execution can be helpful for students, and that
the error message descriptions are easier to understand than
standard ones. A recognized shortcoming of PITON is that it
does not visualize object variables.

The second study investigated the effectiveness of PITON
compared to PyCharm+OPT scenario. The authors concluded
that PITON is more beneficial to use in laboratory sessions
because it is impractical for students to switch between
PyCharm and OPT. Additionally, this may have resulted in
comparing PyCharm with PITON, which led to a statistically
significant difference in favor of PyCharm+OPT for the topic
of functions. A survey of students showed that they preferred

 16

PITON over PyCharm+OPT and that its implemented features
are helpful (Elvina et al., 2018).

DS-PITON was evaluated with several quasi-experiments
to measure its effectiveness for learning data structures
compared to traditional textbook learning. Two quasi-
experiments included students that have passed the Basic
Algorithm and Data Structures course with a grade of C or
higher (moderate-paced students), and three quasi-
experiments included students still enrolled in the course with
a mid-term score below C. The comparison took into account
the score and time required to complete an assessment. Results
of the quasi-experiments showed a statistically significant
improvement in favor of DS-PITON for both moderate-paced
and slow-paced students. Regarding time efficiency, a
statistically significant improvement was observed for
moderate-paced students. For slower-paced students, DS-
PITON did not increase time-efficiency, and in one
experiment, it showed a statistically significant increase in
completion time. The feedback from the survey collected
information on potential improvements to DS-PITON and
showed that students believe in its effectiveness for learning
data structure materials (Nathasya et al., 2019).

PlanAni
PlanAni was used in an experiment to study the effect of

visualization on understanding the roles of variables. The
programming language taught was C. The results of
comparing program construction between the control and
experiment groups yielded no significant results. Hence, the
authors compared them based on the SOLO taxonomy (Lister,
Simon, Thompson, Whalley, & Prasad, 2006). A statistically
significant result was obtained on the SOLO levels for
program construction. The difference favored teaching the
roles of variables visually (experimental group) (Shi, Min, &
Zhang, 2017).

A feedback survey showed that students in the
experimental group had a higher rate of approval about the
roles of variables. However, both groups were not satisfied
with their ability to construct programs (Shi et al., 2017).

PVC
Ishizue et al. (2018) carired out an experiment in which

they compared PVC, SeeC and no visualization. The PVC had
the largest percentage of correct answers, with a statistically
significant difference with regard to SeeC. The group that
used SeeC had the lowest score. However, there is no report
that a pre-test was used to check for difference between the
groups. Results from the questionnaire show that most of the
students find PVC useful for introductory programming and
more accessible than other PV tools.

Kumalija et al. (2019) investigated students' perception of
SunLab's features. Given that smartphones have a
significantly smaller screen than other devices, the results
were promising. The animations were fairly visible and text
editor was moderately difficult to use. Students' also agreed
that SunLab helped them understand programming concepts,
with loops and functions obtaining the lowest score.

TEDViT
TEDViT was evaluated in classroom practices for learning

sorting and search algorithms, and the difficulty of
constructing T-Rule sets (Ihara et al., 2017; Yamashita et al.,
2015, 2016). Yamashita et al. (2017) found that software
engineers without much experience with C found TEDViT's

support for learning pointers valuable and were generally
satisfied with practice sessions involving TEDViT.

TEDViT (experimental group) was compared with
ANIMAL (control group) in an experimental setting to
evaluate its effectiveness for learning recursive functions. The
results show that the experimental group achieved much better
scores as well as a higher score increase ratio. Additionally,
TEDViT obtained higher scores for almost all questions in a
feedback questionnaire (Yamamoto et al., 2017).

WinHIPE
WinHIPE was used to compare the effectiveness of

different engagement taxonomies on student learning: no
viewing and viewing, constructing and no-viewing, and
constructing and viewing. The experiment compared student
scores based on three points of view. The global point of view,
which gave a single point for each student showed no
statistically significant difference. At the Bloom's level point
of view, five scores were assigned to each student, each score
for the questions related to a certain level of Bloom's
taxonomy. Students that were engaged with WinHIPE
obtained a statistically significant higher score at the analysis
and synthesis levels. From the topic point of view, scores were
calculated for each topic. At the topic level, the viewing group
outperform both other groups on recursive functions, and the
viewing and constructing groups outperformed the no-
viewing group with a statistically significant difference. With
regard to long-term results of the study, the viewing and
constructing groups had a statistically significant higher pass
rate. The constructing group also had a statistically significant
reduction in drop-out rate. Participants were satisfied with the
use of WinHIPE (Urquiza-Fuentes & Velázquez-Iturbide,
2013).

2) Qualitative evaluations
This section contains reviews on the qualitative

evaluations of PV visualization features. We do not consider
feedback from questionnaires and surveys as qualitative
evaluation.

Omnicode
Omnicode was evaluated on a group of students who were

asked to solve three introductory programming problems in
Python using the system. A questionnaire was administered,
and a debriefing interview was conducted. Although the
results of the questionnaire were encouraging, it identified a
potential problem with visual overload. Interview results
report that students believe Omnicode is useful for helpful for
the formation of correct mental models and for providing
teaching and explanatory assistance. Students successfully
used the visualization to debug their code and improve their
mental models. The authors note that students used the
scatterplot view provided by the system when explaining how
the code works. An issue with Omnicode is the large amount
of visualized data which leads to visual overload. Students
suggested some improvements on how to reduce the number
of scatterplots (Kang & Guo, 2017).

UUhistle
UUhistle was used in a phenomenography study to

understand the way learners experience VPS and what they
can learn from VPS. The authors conducted semi-structured
interviews that revolved around VPS exercises. Results report
six logically connected categories of various VPS perceptions.
VPS is perceived as the manipulation of visual components
and supported actions in the simplest category. In the richest

 17

category, VPS is perceived as improving programming skills
through understanding implementation concepts and what the
computer does. The other four categories are between and
form two branches of two categories. Both branches extend
the simplest category and are extended by the richest. One
branch emphasizes the operations of the computer, while the
other emphasizes VPS as a platform for studying code
examples and present concepts (Sorva, Lönnberg, & Malmi,
2013).

VIP
Isohanni & Knobelsdorf (2013) studied how learners

engaged with the visualization tool VIP. Their research was
not based on any existing engagement taxonomy since this
might lead, as the authors reason, to ignoring certain forms of
engagement. After grouping user activities into several layers
of abstractions, the authors recognized four groups that
describe "levels of visualization engagement": no need for
VIP, using VIP fully, using VIP partially, and unfinished use
of VIP. These groups were further related to the internalization
concept of activity theory. The authors also recognized four
different phases of using VIP, which can be used to describe a
learner's certain advancement in the use of VIP. The phases
are introductory use of VIP, progressive use of VIP, routine
use of VIP and creative use of VIP.

Ville
Ville was evaluated as a collaborative learning platform in

different teaching scenarios (Laakso et al., 2018).

3) Surveys

Online Python Tutor (Codechella)
Guo et al. (2015) evaluated how users interacted within the

Codechella system. Here we focus only on the interaction with
the visualization provided by OPT. Most of the actions with
the visualization included stepping through the visualization.
The average length of the programs was not reported in the
study, but given that users asked help from others, we may
assume that they had at least around a dozen lines of code.
Although, it is not considered part of the visual
representations, chatting is also included and is the second
most recorded activity. Again, this makes sense since users
needed to communicate explanations of code. It would be
interesting to see which visualizations of concepts, algorithms
or data structures correlate the most with the number of
exchanged chat messages. Running and editing were reported
as the least recorded activities.

TM Visualization
Al-Fedaghi & Alrashed (2014) carried out two

experiments measuring student understanding of C++
programs using TM visual representations. The first
experiment had a single group that used TM representations,
while the second had two. Both experiments included one
group that had no visualization. In both experiments, the
groups that used FM representations had better scores in
average. The second experiment also showed that the variance
in scores is higher in the group without TM visualization.
However, scheduling and registration limitations prevented
more reliable analysis. In the context of engagement
taxonomies, this one could be considered as a comparison of
no viewing vs viewing.

jGrasp
jGrasp's viewers were investigated in several studies.

They mostly investigated the systems' effectiveness towards
learning algorithms and data structures. However, based on

these, the authors refined the viewers for use in other courses,
such as CS1. A survey of CS1 and CS2 educators from various
faculties was carried out in 2011, which showed that the
educators believe that jGrasp could have a positive impact on
learning. These educators attended a workshop in
visualization for CS1 and CS2. A year later, the authors
surveyed students that used jGrasp in a CS2 course, which
again showed a positive attitude towards jGrasp's canvas
(Cross et al., 2014).

The authors also conducted a survey on students enrolled
in a CS1 course in 2013. Students were required to complete
an in-lab activity that focused on binary and linear search in
Java. Authors report that the students' felt that jGrasp had a
positive impact on their learning (Cross et al., 2014).

LISN
LISN's visualization and language-independence aspects

were evaluated on a group of lecturer assistants. The results
were fairly positive, with some of the participants pointing out
that additional details for variables are required. Incorporating
new programming language support into LISN was
considered simple (Sulistiani & Karnalim, 2018).

PROVIT
Yu Yan et al. (2014) evaluated PROVIT with a group of

high-school students. About a half of the students said that
they can understand C programs, and very few stated that they
can write them. PROVIT-CI's features were evaluted by
students and instructors (YAN et al., 2018). Results showed
that the system was highly accepted by students, and
instructors found it helpful during classroom lecture
instructions.

Thonny
Annamaa collected Thonny activity logs from 44 students.

While replaying the logs, the authors noticed some interesting
working patterns. The authors report that students found
Thonny helpful in dbugging their programs and they liked that
the shell and editor were in the same window (Annamaa,
2015).

Virtual-C IDE
Virtual-C IDE was evaluated by comparing three years of

students' scores and failure rates. The first year saw students
use commercial IDE, the second used Virtual-C in lectures
and a commercial IDE for programming assignments, and
only Virtual-C IDE was used in the third year. The failure rate
dropped considerably in the final year, which also saw an
increase in student scores. The integrated functional tests
required students to fix their errors which lead to students
spending more time on their programming assignments (D.
Pawelczak & Baumann, 2014).

Pawelczak (2016) found that a class which used the testing
framework had a lower failure rate compared to the one that
did not. The transparency of the tests encouraged students to
more willingly comprehend their errors and lead to less time
spent on debugging programs.

VIII. VISUAL PROGRAMMING LANGUAGES

Visual programming languages can be taught of as a
subcategory of program visualization (Price et al., 1993). The
visual representation of concepts provided by a VPL may be
taught of as components of a visualization. Hence, novices
must engage with the components provided in order to
construct a working program. The result is a program itself as

 18

well as a visual representation of its structure. Some VPLs,
e.g. Scratch, have a theatre view which can animate the
behavior of the program's concepts, or a subset of them. Some
flowchart VPLs allow the user to step through the execution
of a program (S. Xinogalos, 2013).

A recent literature review on VPLs investigated the effects
of using visual languages in introductory programming
courses. The authors found that VPLs can have a positive
effect on retention rates and interest in programming when
used with the right age group. It was also reported that the
choice of first programming language for learning
programming is not as important as the teaching methodology.
Preferred programming languages include Python and Java as
text-based languages, and Scratch as a VPL. In a course
setting, it may be beneficial to combine the use of a VPL and
a textual programming language (Noone & Mooney, 2018).

Many VPLs are intended to assist novices in learning to
program. One of the most well-known examples is Scratch
(Maloney et al., 2010), which provides block-based
representations of programming concepts. Each block has a
jigsaw-like shape which significantly simplifies syntax. VPLs
are also often developed to assist non-programmers with some
workflow. For example, LabView is a dataflow visual
programming language (DFVPL) whose goal is to assist
researches create applications (Alireza Kavianpour, 2014).

There are different ways for classifying VPLs. Burnett &
Baker (1993) proposed a classification system for VPL
literature. They propose the classification of visual languages
based on the programming paradigm or visual representation.
Three main representations are identified: diagrammatic,
iconic and static pictorial sequences. Myers (1990) also
proposed a classification based on the visual representation of
a language. The classification is much finer-grained. For
example, the classification includes directed graphs and data
flow as two categories, which are both diagrammatic
representations.

Zhang (2007) classifies visual programming languages as
diagrammatic, icon, and form-based. Diagrammatic
languages are composed of nodes that are connected with
edges. Dataflow programming languages are a type of
diagrammatic programming languages. Iconic programming
languages use symbolic representations for variables, data
types and control (S. Xinogalos, 2013). Icons are attached to
one another and can be combined into more complex concepts
(Bácsi & Mezei, 2019). An example of an iconic
programming languages is Lego Wedo (“LEGO® Education
WeDo 2.0 Core Set.,” n.d.). Based on their definition and
similarity to Lego Wedo, Scratch, which is often referred to as
a block-based programming language, would also be
considered an icon programming language. Not all icon
programming languages are block-based. Spreadsheets are an
example of form-based programming languages (Zhang,
2007).

Bácsi & Mezei (2019) note that visual languages can also
be categorized based on the relation type. Connection-based
are, just like diagrammatic languages, represented with nodes
and edges. Containment-based programming languages are
those whose elements are embedded into other elements and
combined to form visual sentences, e.g. Scratch.

Xue et al. (2017) proposed a classification based on the
execution model of visual programming languages. They

identified control flow, data flow, state transition and
constraint-based languages.

Erwig et al. (2017) proposed an ontology for visual
languages which characterizes specific languages through
profiles. A profile of a visual language is the combination of
essential and derived tags which capture the language's
aspects. The authors identified four essential tags that
characterize a languages visual representation: graph,
partition, icon, text. This ontology does not make a distinction
between VPLs and any other visual languages.

Despite the many categorizations and taxonomies for
VPLs, most of them fall into block-based and dataflow visual
programming languages (Mason & Dave, 2017). Block-based
programming language natively support programming in the
imperative programming paradigm. DFVPLs' programming
paradigm corresponds to functional programming. In the next
section we will discuss DFVPLs in more detail.

A. Dataflow visual programming languages

Programs in DFVPLs are constructed by connecting nodes
with edges. The resulting program is a directed graph.
Different nodes may require different types and numbers of
inputs and may produce one or more outputs. The execution
starts from activation nodes that usually provide some data
which flows downstream until it reaches a node without any
output arcs (Johnston, Hanna, & Millar, 2004). The nodes
transform the data as it flows through it. This transformation
corresponds to the way functions chain together and transform
data in functional programming languages.

Nodes in a dataflow graph can be taught of as visual
components of a notional machine. These components may
operate at different levels of abstraction. For example, a
dataflow visual language may provide low level instructions
as nodes, such as basic mathematical operations. On a higher
abstraction level, the nodes could provide functions
implemented in another language, e.g. Python or Java
(Johnston et al., 2004). Hence, depending on the target
audience, dataflow languages may provide different
components for constructing programs.

There are two main execution modes in the dataflow
model: data-driven and demand-driven. In the data-driven
approach, a node executes as soon as data is available on all
of its inputs. In the demand-driven approach, a node activates
when it receives a request for its data. Requests are propagated
upwards through input edges, and data is sent downwards
through output nodes. In both cases, a node places the result
of its execution on its output arcs (Hils, 1992; Johnston et al.,
2004).

DFVPLs provide several key aspects which may help in
understanding program execution. The graph representation
of a program makes the relationship between program
components explicit. Users can visually explore data for a
more concrete programming experience. DFVPLs also
provide visual feedback on different levels of liveliness
(Johnston et al., 2004). The four levels of liveliness described
in literature build upon one-another. A higher level includes
all of the lower levels. On the informative level, the system is
used only to document the program or assist with
understanding it. The informative and significant level allows
the user to execute the constructed program. The third level,
informative, significant and responsive, encompasses systems
which re-execute the graph whenever the user changes

 19

anything, e.g. modifying data. Finally, the fourth level also
assumes that the system can process data streams while the
user is editing the program (Hils, 1992; Tanimoto, 1990).

An advantage of DFVPLs is that it provides explicit
specification for task-level parallelism. All nodes whose data
is available at the same time step may be executed in parallel
(Hong, Oh, & Ha, 2017; Johnston et al., 2004).

B. DFVPL issues

A few notable issues with DFVPLs that have been
recognized decades ago still seem to be open. These include
visual representation and iteration and control constructs
(Hils, 1992; Johnston et al., 2004; Sousa, 2012).

1) Visual representation issues
Visual representation issues arise when programs are

constructed from a large number of nodes. Besides the
program not fitting the screen, a visually complex program
may be more difficult to comprehend than its textual
counterpart. A solution that naturally arises is to provide
hierarchical grouping of nodes. Complex groups of nodes are
then represented as a single node (Sousa, 2012).

2) Control and iterative construct issues
Common control and iterative constructs found in textual

programming languages control the flow of the program.
However, nodes in a dataflow program transform data and
control which nodes it flows to. Hence, it is difficult to transfer
these constructs into a dataflow environment.

Instead of common control structures, DFVPLs usually
provide merge and switch blocks. The merge block takes two
inputs and a Boolean "control" signal. The control signal
determines which input will be forwarded as output. The
switch takes a single input and a Boolean "control" signal.
However, the switch block has two outputs. The Boolean
signal determines to which output the data will forwarded
(Johnston et al., 2004).

Iteration constructs are much more difficult to represent.
Although different DFVPLs proposed several different
solutions, it remains an open issue. DFVPLs usually provide
different nodes for different iteration constructs. Some
DFVPLs like Show and Tell and LabView use nodes that
encompasses other nodes which represent the body of the loop
(Johnston et al., 2004). VIPERS provides an iteration construct
that does not encompass other nodes. Rather, different output
edges are used to connect the body and continuation once the
loop exits. It also requires a feedback control signal to
determine when the execution of the next iteration should take
place. The two examples provided represent two main
approaches for representing iteration constructs: the first avoid
cycles in a program graph, and the second uses them (Mosconi
& Porta, 2000).

A key issue that makes iterative construct difficult to
represent is that they are required to mutate some state. This
requirement infringes the single assignment rule natural for
dataflow programs (Mosconi & Porta, 2000).

C. Actors and dataflow

The actor model is a message-passing concurrency model
first introduced as a formalism in artificial intelligence (Čolak
& Čuvić, 2019; Hewitt, Bishop, & Steiger, 1973). Basic
primitives in the actor model are actors, i.e. computational
agents, which are autonomous and operate asynchronously
and concurrently. Actors can communicate with each other by

sending messages and exhibit some behavior when a message
is received. After receiving a message, an actor can carry out
computations, change its behavior, create new actors, reply to
a message or update some local state (Agha, 1986).

Actors have a mailbox for storing messages, which are
commonly stored in a queue. Each actor in the actor model
sequentially processes the messages from the mailbox in a
FIFO fashion. The programmer does not need to worry about
thread management or locking (“Actors • Akka
Documentation,” n.d.). These aspects of the actor model
simplify reasoning about the execution of concurrent
programs.

In the dataflow model, a node may be taught of as an actor.
An actor is viewed as a processing node which exhibits some
behavior when a message is received. Messages exchanged
between actors can be taught of as communication channels,
or edges (Sousa, 2012). However, the relationship between the
models seems to require that the graph is a type of Kahn
processing network. In Kahn processing networks,
communication is achieved through unidirectional FIFO
queues, where writes are nonblocking and reads are blocking
operations (Lee & Parks, 1995).

IX. VISUALIZATIONS FOR TEACHING

In this section we introduce two visualization systems that
we have developed for teaching and learning. The first system
which we will describe is a DFVPL for learning introductory
and functional programming that we call PARVIS. The
second system is AkkaVisual, which is a PV system for
visualizing actor programs.

A. PARVIS for introductory programming

PARVIS is a web based DFVPL initially developed for
teaching introductory programming. The system combines
certain aspects found in PV systems with the DFVPL.

Controlled viewing that is implemented in many PV
systems allows users to control the execution of the program
in a step-by-step fashion and highlights the currently
executing instruction. PARVIS similarly allows the user to
step through the execution of the program graph. Programs are
parsed and executed in the background to determine the
number of steps needed to completely execute the program.
The parser uses a modified BFS algorithm to traverse the
program graph. The result of the parser is a key-value data
structure. The key is a step in the execution and the value
contains all of the nodes that will be executed at that step
(Aglić Čuvić, 2018).

In the case where two nodes are mutually independent, it
is problematic to determine which node should be highlighted
first. Therefore, all of them are highlighted simultaneously.
The step through can be taught of as visiting the nodes in a
fashion similar to breadth-first search (BFS).

It is possible to have a situation in which node A expects
multiple inputs and one, from node B, becomes available at an
earlier step than the others. In this situation, node B will be
highlighted for each successive step until all of the other inputs
to A become available.

PARVIS provides different types of variable nodes for
numbers, strings, Boolean values and arrays. For each value
stored in a variable node, there is a textbox that prints it out.
Users can edit the value if the node does not have any inputs

 20

connected. Therefore, the user can see the state of the program
at each step.

We wanted to be able to demonstrate Python programs
with PARVIS. Hence, the system provides print and input
nodes. Just as Python's print instruction can take an arbitrary
number of string arguments, the print node can take an
arbitrary number of inputs. The values of the inputs are printed
in a designated area in the order of their position on the canvas
along the Y-axis. When the input node is executed, a modal
window opens for the user to enter the value. These behaviors
are similar to how PV systems handle input and print
instructions.

Control flow nodes include if, elif, and else. Because we
wanted the nodes to behave similarly to Python instructions,
their output edges do not carry data. They just provide a way
to add nodes to the program that will execute after the control
flow node. However, the output edges of these nodes must be
connected to activation nodes, such as variables. The system
color codes which branch of the program will be executed.
Merge and distributor block are also provided.

An example program is given in Fig. 2. The program in the
image prints out a message depending whether the input to the
if node is true or false. The highlighted print node prints the
value in a special output area. The output area is also
highlighted to signalize that a print occurred.

PARVIS also provides a node for Python's for loop. The
node is actually a two-part node that consists of a head and
body node. The nodes are connected via an edge directed from
the head to the body, which is not considered an input arc. The
body node encompasses all of the nodes that will be executed
in each iteration. When a user connects an encompassed
node's output to the loop body, an output and corresponding
input port are generated. The value of the node then re-enters
the body node at the corresponding input port.

The system also supports a high level of liveliness. The
program is re-evaluated up to the current step whenever the
user edits the program or changes a variable value. Hence, it
provides instant visual feedback about the effect of user
actions on the program.

We used PARVIS in an experimental setting with a group
of students enrolled in the application of computers course at
the Faculty of Chemical Technologies. Students were
studying the basics of Python programming: variables, control
constructs and the for loop. The system was used to
demonstrate Python programs and students were urged to use
the system. The other group was given static flowchart
representations of the examples.

From our experience, the students used PARVIS to some
extent to execute the given examples. However, they did not
like the system. The visual representations were too complex
for the short and simple programs that they were given. We
have not yet statistically analyzed the collected data.

We concluded that the low granularity of PARVIS and
complex visual representations were not appropriate for
teaching simple Python programs.

B. PARVIS for functional programming

We later extended PARVIS with additional nodes to
support teaching and learning functional programming. Since
the programming paradigm of dataflow languages correspond
to the functional programming paradigm, the extension

seemed natural. As functions transform input data, so do the
nodes in a dataflow language. Hence, we added nodes for the
map, filter and reduce functions among others.

The input to the introduced higher order functions needs
to be an array. Map and filter produce new arrays, and the
output type of the reduce depends on the accumulator value
which the user needs to enter. When the execution step reaches
an array node, the parser uses a modified DFS algorithm to
determine a subgraph that starts from the array and ends either
with the end of the program or another variable type node.
Once finished, new stepping controls become visible on the
interface. These allow the user to step through the elements in
the array. At each step the current array element and subgraph
are highlighted. If the subgraph ends with a variable type, then
the transformation of values is visible for each step. For
example, if the subgraph is array-map-map-array2, the result
of passing the element through the two maps is added to
array2. The next step will add the second element and so on.
The added functionality allows users to inspect how an array
is transformed per element when data flows through a chain
of functions.

One of the limitations of the system is that higher-order
function nodes do not provide a way to define function
parameters. Instead, the user needs to write a function in
JavaScript.

PARVIS was used in eight lab sessions in which students
were taught functional programming. The lab sessions usually
included up to 7 students. We gave the students examples in
both PARVIS and JavaScript and assignments which the
students were required to program in PARVIS. They were
reluctant to use the system at first but accepted it after the first
or second session. The second to final session included a
preliminary test with three assignments in JavaScript and three
in PARVIS. For the final session we administered a test with
four assignments, two of which had to be programmed in
JavaScript and two in PARVIS. JavaScript and PARVIS
assignments were similar and had a comparable difficulty. An
additional assignment was given for which students could
choose the implementation language.

Because the system was still in its prototype stage, it could
not detect syntax and semantic errors in parameter functions.
Therefore, if an error occurred inside the parameter functions,
students were often required to reload the DFVPL web page.
The problem caused some difficulties with the system's
usability.

Fig. 2 An example program in Parvis

Fig. 3 An example of executing arrays element-wise

 21

Since students are not used to think functionally, they may
start program in an imperative style. One of the benefits of the
DFVPL was that it forced students to use functional
programming. One student commented that the "system
directs towards the functional programming paradigm…
here's five nodes and figure it out". We still observed students
using the imperative programming paradigm for some
assignments or parameter functions.

Seven students took the final test during the eight session.
The average score of the assignments in JavaScript
(avg=2.857) was lower than those in PARVIS (avg=4.286).
An additional three students took the test at a later time, their
average score for JavaScript assignments (avg=4.333) was
slightly higher than the PARVIS average score (avg=4).
Combining all student scores give an average that favors
PARVIS (avg=4.2) over JavaScript (avg=3.3).

The scores show that using PARVIS did not have a
negative effect on learning functional programming. Because
of the small number of students and lack of a structured test,
more rigorous statistical analysis is not possible. However, the
observed scores are encouraging. They indicate that PARVIS
could assist students with learning functional programming.
However, additional work on the system is needed to
eliminate possible bugs.

C. AkkaVisual

AkkaVisual is a PV system for visualizing actor programs.
It visualizes actors in a program and their communication
channels. Hence, it corresponds to a visualization of a
message-passing notional machine (Sorva, 2013). The system
currently offers viewing the visualization while the program
is executing. Actors are represented as nodes in a graph and
the message channels are edges. The system also displays a
timeline of message sent events. Messages are order according
to the vector clock algorithm (Čolak & Čuvić, 2019).

AkkaVisual is a web-based application that collects JSON
data published to an exposed API by the running program. The
data will typical contain information about the sender and
receiver actors, such as their name and type. It will also
contain certain details about the message, such as the type and
value contents. Once a JSON object is received, the server side
of the application uses SignalR to push it to the client-side
(Čolak & Čuvić, 2019; “Real-time ASP.NET with SignalR |
.NET,” n.d.).

Any standard HTTP POST request can send data to the
API. The separation of the visualization from the program
itself allows AkkaVisual to support visualizing OO and agent-
based programs. The executing programs simply need to
publish the required data in the correct format (Čolak & Čuvić,
2019).

At our Faculty, we use C# and Akka.NET to teach the
actor model. For convenience, we implemented a custom actor
mailbox intercepts received messages and publishes a copy of
them to AkkaVisual. The mailbox can be easily added to a
student project and actors can be configured to use it via
config file. Fig. 4 shows an overview of this process (Čolak &
Čuvić, 2019).

AkkaVisual was evaluated in a pilot study with a group of
students. Unfortunately, students did not have an opportunity
to use the system. Therefore, we demonstrated its
functionality in front of them. Data was collected using a

questionnaire which consisted of seven 5-point Likert-scale
questions and an open question. The Likert-scale questions
asked students to rate how useful they thought the system and
some of its existing, and planned features, are for learning
actor programming. The open question was included so that
students could share their thoughts about the system. Students
that did not take the course were excluded from the data
analysis process. A total of 19 students filled out the
questionnaire, and 11 answered the open question. Descriptive
statistics were used to analyze the quantitative data and
content analysis for the qualitative (Čolak & Čuvić, 2019).

Results of the descriptive analysis are given in Table 6. All
of the mean and median scores are high, which indicates that
students believe that the system and its features could be
useful when learning actor programming. We briefly
comment on some of them.

The highest scored feature is saving and replying the
visualization at will (avg=4.53). We plan to implement this
feature in the future. Possible explanations for this high score
include: 1) wanting to share the visualization without sharing
the program and 2) saving time. Regarding the first
explanation, a saved replay would allow students to help their
peers without sending them the solution of an assignment.
Students that struggle with an assignment could compare their
visualization to that of a correct solution. The second
explanation is that students do not want to re-run the
application multiple times because it might have long-running
computations or require multiple inputs that need to be entered
manually (Čolak & Čuvić, 2019).

The second highest scored feature (avg=4.37) is the
information provided about the actors and the messages they
exchange. An actor system may have different types of actors
that handle multiple types of messages. Students often find it
difficult to understand which communication channels are
formed and to find bugs when they send a message of the
wrong type. Hence, providing information about the actors
and their message exchanges might alleviate some of the
difficulties (Čolak & Čuvić, 2019).

Students also gave high scores to other existing and
planned features (avg >= 4.21). They also believe that the
system is adapted for students learning about actors for the
first time(avg=4.05) (Čolak & Čuvić, 2019).

Using content analysis, we derived eight codes from the
responses to the open question. These eight codes are grouped
into three categories: positive about the tool, the tool needs
improvements and tool isn't useful. The category positive
about the tool contains cods that indicate that AkkaVisual
could be useful for teaching the actor model. The second
category is related to improvements and new features
required. Finally, the third category contains codes for
answers that believe the tool will not help with learning the
actor model. Fig. 5 shows an overview of the categories and
codes derived with content analysis (Čolak & Čuvić, 2019).

Fig. 4 An overview of how data is collected and displayed in

AkkaVisual

 22

TABLE 6 DESCRIPTIVE RESULTS FOR AKKAVISUAL FEATURES (PILOT STUDY)

Question
Score

Avg Std.

deviation

Mode Median N

1 The tool is adapted for first-year graduate students learning about the actor model
for the first time.

4.05 0.911 4 4 19

2 I would like to see a timeline of the execution of each thread or process where the

exact time of sending and receiving each message is displayed.

4.21 0.976 5 5 19

3 The replay feature seems useful. 4.16 0.898 5 4 19

4 The timeline seems to be useful in visualising the concurrency of the system. 4.32 0.749 5 4 19

5 It is useful to see the features of the messages sent and the type of the actor. 4.37 0.761 5 5 19

6 It would be useful to save the generated visualisation and play it without rerunning
the program.

4.53 0.697 5 5 19

7 It would be useful to send a message to an actor from the web application. 4.32 0.582 4 4 19

Code frequencies are given in Table 7. From the code
frequencies we can conclude that the students' general opinion
of the system is positive. Students believe that AkkaVisual can
assist them with learning the actor model. Some participants
expressed their desire to use the system in class. One student
pointed out that they "will use it [AkkaVisual] when taking
the course", while another believes he/she would achieve a
batter grade: "I think my results in the course would have been
better with the use of this visualization".

The results obtained from this pilot study seem promising
and motivate further development of the system. The main
limitations of the study were the number of students and that
they did not have an opportunity to use the visualization
themselves.

X. VISUAL PROGRAMMING AND DATA SCIENCE

In this brief section we will discuss the application of
visualizations for data science. The field has become
increasingly popular in recent years, with deep learning
models achieving record scores on benchmark problems.
Python still seems to be one of the most popular languages for
data science, with TensorFlow (“TensorFlow,” n.d.), Pytorch
(“PyTorch,” n.d.) and Keras (“Home—Keras
Documentation,” n.d.) some of the most popular Deep
Learning frameworks (Wongsuphasawat et al., 2018).

The goal in data science is to come up with a statistical
(e.g. predictive) model that will accurately describe the given
data. Experts often need to experiment with different models
and parameters to achieve satisfactory results.

Some libraries, such as Keras, facilitate fast prototyping
and experimentation by providing high-level APIs. That way,
researchers do not need to implement the algorithms
themselves. However, they still need to understand these
complex models in order to optimize them.

Several APIs use the dataflow model to facilitate the
development of deep learning models. TensorFlow Graph
Visualizer is a tool that generates an interactive visualization
of TensorFlow models. Visualizations are represented as
dataflow graphs in which nodes are groups of operations. The
system can assist developers with understanding their models
and inspecting their structure. Users can also extend certain
nodes to inspect their nested structure (Wongsuphasawat et
al., 2018).

DeepVisual is a visual programming tool implemented as
a PyCharm plugin. Instead of programming, developers can
focus on the design of their deep learning models. The system
provides different visual components to represent different
types of layers, which can be connected to each other to
construct deep neural networks. DeepVisual can generate the
code from the visual graph structure, and vice-versa (Xie, Qi,
Ma, & Zhao, 2019).

StatWire is an IDE for R which visualizes the
transformation of data using a dataflow visual representation.
One of the main goals of the system is to facilitate thinking in
a modular way. The system provides two types of
components: statlets as processing nodes, and viewlets for
printing or plotting data. When the user creates a statlets an
empty function in an R script is created. Code changes made
by the user result in a live update of the visualization
(Subramanian et al., 2018).

Orange3, is a dataflow visual language for designing
machine learning and data mining applications. Its
components, called widgets, support interactive data
exploration. The system provides a widget for programming
Python scripts and an API for adding new widgets. Orange3
can be used without any programming knowledge. The user
simply drags the widgets and connects them (Demšar, Zupan,
Leban, & Curk, 2004; “Orange3,” n.d., p. 3).

TABLE 7 CODE FREQUENCIES OBTAINED WITH CONTENT ANALYSIS

Code Frequency Percentage

the tool will facilitate learning 5 45,45%

suggests classroom or personal

use

3 27,27%

add additional features 2 18,18%

helps to perceive actor systems 2 18,18%

improve user-friendliness 2 18,18%

requires theoretical knowledge 1 9,09%

allows theory consolidation 1 9,09%

Fig. 5 A map of categories and codes derived by content analysis

 23

XI. CONCLUSION

In this paper we reported our findings from conducting a
literature review on PV systems. We identified several new
PV systems, some of which are research prototypes, while
others could become long-term systems. Most of the
evaluation papers that we reviewed reported that participants
have a positive attitude towards PVs. Some papers also
reported a positive effect on students' programming abilities.

We then discussed VPLs in general and provided an
overview of several taxonomies. Our focus was on DFVPLs
as a subcategory of VPLs. DFVPLs are often designed to
provide non-programmers the ability to quickly develop
specific types of applications. We presented PARVIS, a
DFVPL that incorporates some features commonly found in
PVs.

PARVIS was used with novice programmers and students
learning functional programming. The system proved to be
too complex for novice programmers. However, the average
test score on assignments programmed in PARVIS were
higher than those programmed in JavaScript. This result
indicates that PARVIS could have a positive impact for
learning functional programming and perhaps other more
complex topics.

AkkaVisual was also described as a visualization system
for actor programs. The system can also visualize the
interactions between different programming entities such as
objects and agents. Users simply need to provide the system
with data that contains the required information in JSON, such
as sender and receiver. The pilot study showed that students
had a positive attitude towards AkkaVisual and would like to
have used it for learning about the actor model.

For future work, we would like to extend the functionality
of AkkaVisual. First, we would like to add some of the
features that students scored in the questionnaire. Secondly,
we would like to evaluate its usability in an experimental
setting. Finally, we would like to develop additional
components that would allow simpler visualization for OO
and agent-based programs.

We would also like to inspect the usability of using
existing simulation systems, such as NetLogo, as a
visualization interface. Using NetLogo in this way could lead
to a higher engagement level and more customization options
for teachers. Teachers could prepare procedures that the
student could use to view the visualization from a different
perspective. Students could also use the NetLogo language to
manipulate and further play with the visualizations.

REFERENCES

Actors • Akka Documentation. (n.d.). Retrieved September

15, 2019, from

https://doc.akka.io/docs/akka/current/actors.html

Agha, G. (1986). Actors: A Model of Concurrent

Computation in Distributed Systems. Cambridge,

MA, USA: MIT Press.

Aglić Čuvić, M. (2018). Introducing a Dataflow visual

programming language for understanding program

execution. 2(1), 35–40.

AguiaJ. (n.d.). Retrieved September 5, 2019, from

http://www.aguiaj.org.pt/home

Al-Fedaghi, S., & Alrashed, A. (2014). Visualization of

Execution of Programming Statements.

Proceedings of the 2014 11th International

Conference on Information Technology: New

Generations, 363–370.

https://doi.org/10.1109/ITNG.2014.74

AlFedaghi, S. S. (2019). Five Generic Processes for

Behavior Description in Software Engineering.

ArXiv, abs/1907.11893.

Al-Fedaghi, S., & Sultan, S. (2017). Flow Machine

Diagrams for VHDL Code. Proceedings of the

Second International Conference on Internet of

Things, Data and Cloud Computing, 162:1–162:6.

https://doi.org/10.1145/3018896.3056779

Alireza Kavianpour. (2014). LabVIEW : A Teaching Tool

for the Engineering Courses. 2014 ASEE Annual

Conference & Exposition, 24.842.1-24.842.11.

Al-Sakkaf, A., Omar, M., & Ahmad, M. (2019). A

systematic literature review of student engagement

in software visualization: A theoretical perspective.

Computer Science Education, 29(2–3), 283–309.

https://doi.org/10.1080/08993408.2018.1564611

Annamaa, A. (2015). Introducing Thonny, a Python IDE for

Learning Programming. Proceedings of the 15th

Koli Calling Conference on Computing Education

Research, 117–121.

https://doi.org/10.1145/2828959.2828969

Azadmanesh, M., & Hauswirth, M. (2017). Concept-Driven

Generation of Intuitive Explanations of Program

Execution for a Visual Tutor. 2017 IEEE Working

Conference on Software Visualization (VISSOFT),

64–73. https://doi.org/10.1109/VISSOFT.2017.22

Bácsi, S., & Mezei, G. (2019). Towards a Classification to

Facilitate the Design of Domain-Specific Visual

Languages. Acta Cybernetica, 24(1), 5–16.

 24

Banerjee, G., Murthy, S., & Iyer, S. (2013). Program

visualization: Effect of viewing vs. Responding on

student learning. Proceedings of the 21st

International Conference on Computers in

Education, ICCE 2013, 194–203. Retrieved from

https://www.scopus.com/inward/record.uri?eid=2-

s2.0-

84896470578&partnerID=40&md5=6461d4f84556

f81a980907a57f85dbe1

Banerjee, Gargi, Murthy, S., & Iyer, S. (2015). Effect of

active learning using program visualization in

technology-constrained college classrooms.

Research and Practice in Technology Enhanced

Learning, 10(1), 15.

https://doi.org/10.1186/s41039-015-0014-0

Ben-Ari, M. (1998). Constructivism in Computer Science

Education. Proceedings of the Twenty-Ninth

SIGCSE Technical Symposium on Computer

Science Education, 257–261.

https://doi.org/10.1145/273133.274308

Ben-Ari, M., Bednarik, R., Ben-Bassat Levy, R., Ebel, G.,

Moreno, A., Myller, N., & Sutinen, E. (2011). A

decade of research and development on program

animation: The Jeliot experience. Journal of Visual

Languages & Computing, 22(5), 375–384.

https://doi.org/10.1016/j.jvlc.2011.04.004

Berney, S., & Bétrancourt, M. (2016). Does animation

enhance learning? A meta-analysis. Computers &

Education, 101, 150–167.

https://doi.org/10.1016/j.compedu.2016.06.005

Berry, M., & Kölling, M. (2016). Novis: A Notional

Machine Implementation for Teaching Introductory

Programming. 2016 International Conference on

Learning and Teaching in Computing and

Engineering (LaTICE), 54–59.

https://doi.org/10.1109/LaTiCE.2016.5

Berry, Michael, & Kölling, M. (2013). The Design and

Implementation of a Notional Machine for

Teaching Introductory Programming. Proceedings

of the 8th Workshop in Primary and Secondary

Computing Education, 25–28.

https://doi.org/10.1145/2532748.2532765

Berry, Michael, & Kölling, M. (2014). The State of Play: A

Notional Machine for Learning Programming.

Proceedings of the 2014 Conference on Innovation

& Technology in Computer Science Education, 21–

26. https://doi.org/10.1145/2591708.2591721

Blockly. (n.d.). Retrieved August 12, 2019, from Blockly

website: https://developers.google.com/blockly/

Bruce-Lockhart, M., Crescenzi, P., & Norvell, T. (2009).

Integrating test generation functionality into the

Teaching Machine environment. Electronic Notes

in Theoretical Computer Science, 224, 115–124.

https://doi.org/10.1016/j.entcs.2008.12.055

Bruce-Lockhart, M. P., & Norvell, T. S. (2000). Lifting the

hood of the computer: Program animation with the

Teaching Machine. 2000 Canadian Conference on

Electrical and Computer Engineering. Conference

Proceedings. Navigating to a New Era (Cat.

No.00TH8492), 2, 831–835 vol.2.

https://doi.org/10.1109/CCECE.2000.849582

Bruce-Lockhart, M. P., & Norvell, T. S. (2007). Developing

Mental Models of Computer Programming

Interactively Via the Web. 2007 37th Annual

Frontiers In Education Conference - Global

Engineering: Knowledge Without Borders,

Opportunities Without Passports, S3H-3-S3H-8.

https://doi.org/10.1109/FIE.2007.4418051

Burnett, M. M., & Baker, M. J. (1993). A Classification

System for Visual Programming Languages.

Corvallis, OR, USA: Oregon State University.

Clang C Language Family Frontend for LLVM. (n.d.).

Retrieved August 30, 2019, from

https://clang.llvm.org/

CLIP. (n.d.). Retrieved September 1, 2019, from

http://www.cs.tut.fi/~vip/clip/clip_english.html

Čolak, A., & Čuvić, M. A. (2019). An educational tool for

visualising actor programs. 2019 42nd International

Convention on Information and Communication

Technology, Electronics and Microelectronics

 25

(MIPRO), 605–610.

https://doi.org/10.23919/MIPRO.2019.8756918

Cross, J., Hendrix, D., Barowski, L., & Umphress, D.

(2014). Dynamic Program Visualizations: An

Experience Report. Proceedings of the 45th ACM

Technical Symposium on Computer Science

Education, 609–614.

https://doi.org/10.1145/2538862.2538958

Čuvić, M. A., Maras, J., & Mladenović, S. (2017).

Extending the object-oriented notional machine

notation with inheritance, polymorphism, and GUI

events. 2017 40th International Convention on

Information and Communication Technology,

Electronics and Microelectronics (MIPRO), 794–

799.

https://doi.org/10.23919/MIPRO.2017.7973530

Demšar, J., Zupan, B., Leban, G., & Curk, T. (2004).

Orange: From Experimental Machine Learning to

Interactive Data Mining. In J.-F. Boulicaut, F.

Esposito, F. Giannotti, & D. Pedreschi (Eds.),

Knowledge Discovery in Databases: PKDD 2004

(pp. 537–539). Springer Berlin Heidelberg.

Dien, H. E., & Asnar, Y. D. W. (2018). OPT+Graph:

Detection of Graph Data Structure on Program

Visualization Tool to Support Learning. 2018 5th

International Conference on Data and Software

Engineering (ICoDSE), 1–6.

https://doi.org/10.1109/ICODSE.2018.8705794

Du Boulay, B. (1986). Some Difficulties of Learning to

Program. Journal of Educational Computing

Research, 2(1), 57–73.

https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

Earwood, B., Jeong Yang, & Young Lee. (2016). Impact of

static and dynamic visualization in improving

object-oriented programming concepts. 2016 IEEE

Frontiers in Education Conference (FIE), 1–5.

https://doi.org/10.1109/FIE.2016.7757639

Egan, M. H., & McDonald, C. (2013). Runtime error

checking for novice C programmers. 4th Annual

International Conference on Computer

ScienceEducation: Innovation and Technology

(CSEIT 2013), 1–9.

Egan, M. H., & McDonald, C. (2014). Program

Visualization and Explanation for Novice C

Programmers. Proceedings of the Sixteenth

Australasian Computing Education Conference -

Volume 148, 51–57. Retrieved from

http://dl.acm.org/citation.cfm?id=2667490.266749

6

Egan, M. H., & McDonald, C. (2015). Dynamic evaluation

trees for novice C programmers. Proceedings of the

17th Australasian Computing Education

Conference (ACE 2015), 27, 30.

Elvina, E., Karnalim, O., Ayub, M., & Wijanto, M. C.

(2018). Combining program visualization with

programming workspace to assist students for

completing programming laboratory task. JOTSE:

Journal of Technology and Science Education,

8(4), 268–280.

Eranki, K. L. N., & Moudgalya, K. M. (2013). An

Integrated Approach to Build Programming

Competencies through Spoken Tutorial

Workshops. 2013 IEEE Fifth International

Conference on Technology for Education (T4e

2013), 28–31. https://doi.org/10.1109/T4E.2013.15

Erwig, M., Smeltzer, K., & Wang, X. (2017). What is a

Visual Language? J. Vis. Lang. Comput., 38I, 9–

17. https://doi.org/10.1016/j.jvlc.2016.10.005

Gestwicki, P., & Jayaraman, B. (2005). Methodology and

Architecture of JIVE. Proceedings of the 2005

ACM Symposium on Software Visualization, 95–

104. https://doi.org/10.1145/1056018.1056032

Gestwicki, P. V. (2004). Interactive Visualization of Object-

oriented Programs. Companion to the 19th Annual

ACM SIGPLAN Conference on Object-Oriented

Programming Systems, Languages, and

Applications, 48–49.

https://doi.org/10.1145/1028664.1028691

Gordon, M., & Guo, P. J. (2015). Codepourri: Creating

visual coding tutorials using a volunteer crowd of

learners. 2015 IEEE Symposium on Visual

 26

Languages and Human-Centric Computing

(VL/HCC), 13–21.

https://doi.org/10.1109/VLHCC.2015.7357193

Guo, P. J., White, J., & Zanelatto, R. (2015). Codechella:

Multi-user program visualizations for real-time

tutoring and collaborative learning. 2015 IEEE

Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 79–87.

https://doi.org/10.1109/VLHCC.2015.7357201

Guo, Philip J. (2013). Online Python Tutor: Embeddable

Web-based Program Visualization for Cs

Education. Proceeding of the 44th ACM Technical

Symposium on Computer Science Education, 579–

584. https://doi.org/10.1145/2445196.2445368

Haajanen, J., Pesonius, M., Sutinen, E., Tarhio, J.,

Terasvirta, T., & Vanninen, P. (1997). Animation

of user algorithms on the Web. Proceedings. 1997

IEEE Symposium on Visual Languages (Cat.

No.97TB100180), 356–363.

https://doi.org/10.1109/VL.1997.626605

Hendrix, T. D., Cross, J. H., II, & Barowski, L. A. (2004).

An Extensible Framework for Providing Dynamic

Data Structure Visualizations in a Lightweight

IDE. Proceedings of the 35th SIGCSE Technical

Symposium on Computer Science Education, 387–

391. https://doi.org/10.1145/971300.971433

Hewitt, C., Bishop, P., & Steiger, R. (1973). A Universal

Modular ACTOR Formalism for Artificial

Intelligence. Proceedings of the 3rd International

Joint Conference on Artificial Intelligence, 235–

245. Retrieved from

http://dl.acm.org/citation.cfm?id=1624775.162480

4

Hidalgo-Céspedes, J., Marín-Raventós, G., & Lara-

Villagrán, V. (2016). Learning principles in

program visualizations: A systematic literature

review. 2016 IEEE Frontiers in Education

Conference (FIE), 1–9.

https://doi.org/10.1109/FIE.2016.7757692

Hils, D. D. (1992). Visual languages and computing survey:

Data flow visual programming languages. Journal

of Visual Languages & Computing, 3(1), 69–101.

https://doi.org/10.1016/1045-926X(92)90034-J

Home—Keras Documentation. (n.d.). Retrieved September

18, 2019, from https://keras.io/

Hong, H., Oh, H., & Ha, S. (2017). Hierarchical Dataflow

Modeling of Iterative Applications. Proceedings of

the 54th Annual Design Automation Conference

2017, 39:1–39:6.

https://doi.org/10.1145/3061639.3062260

Hosseini, R., Sirkiä, T., Guerra, J., Brusilovsky, P., &

Malmi, L. (2016). Animated Examples As Practice

Content in a Java Programming Course.

Proceedings of the 47th ACM Technical Symposium

on Computing Science Education, 540–545.

https://doi.org/10.1145/2839509.2844639

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002).

A Meta-Study of Algorithm Visualization

Effectiveness. Journal of Visual Languages &

Computing, 13(3), 259–290.

https://doi.org/10.1006/jvlc.2002.0237

Ihara, D., KOGURE, S., Noguchi, Y., Yamashita, K.,

Konishi, T., & Itoh, Y. (2017). Algorithm Learning

by Comparing Visualized Behavior of Programs.

Proceedings of the 25th International Conference

on Computers in Education.

Ishizue, R., Sakamoto, K., Washizaki, H., & Fukazawa, Y.

(2018). PVC: Visualizing C Programs on Web

Browsers for Novices. Proceedings of the 49th

ACM Technical Symposium on Computer Science

Education, 245–250.

https://doi.org/10.1145/3159450.3159566

Isohanni, E., & Knobelsdorf, M. (2013). Students’

Engagement with the Visualization Tool VIP in

Light of Activity Theory. Tampere University of

Technology. Department of Pervasive Computing.

Jayaraman, S., Jayaraman, B., & Lessa, D. (2017). Compact

Visualization of Java Program Execution. Softw.

Pract. Exper., 47(2), 163–191.

https://doi.org/10.1002/spe.2411

Jeong Yang, Young Lee, & Hicks, D. (2016). Synchronized

static and dynamic visualization in a web-based

 27

programming environment. 2016 IEEE 24th

International Conference on Program

Comprehension (ICPC), 1–4.

https://doi.org/10.1109/ICPC.2016.7503733

JGRASP Home Page. (n.d.). Retrieved August 27, 2019,

from https://www.jgrasp.org/index.html

Johnston, W. M., Hanna, J. R. P., & Millar, R. J. (2004).

Advances in Dataflow Programming Languages.

ACM Comput. Surv., 36(1), 1–34.

https://doi.org/10.1145/1013208.1013209

Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T. (2008).

Automatic Assessment of Program Visualization

Exercises. Proceedings of the 8th International

Conference on Computing Education Research,

101–104. https://doi.org/10.1145/1595356.1595376

Kang, H., & Guo, P. J. (2017). Omnicode: A Novice-

Oriented Live Programming Environment with

Always-On Run-Time Value Visualizations.

Proceedings of the 30th Annual ACM Symposium

on User Interface Software and Technology, 737–

745. https://doi.org/10.1145/3126594.3126632

Karnalim, O., & Ayub, M. (2017a). The Effectiveness of a

Program Visualization Tool on Introductory

Programming: A Case Study with PythonTutor.

CommIT (Communication and Information

Technology) Journal, 11(2), 67–76.

Karnalim, O., & Ayub, M. (2017b). The Use of Python

Tutor on Programming Laboratory Session:

Student Perspectives. Kinetik: Game Technology,

Information System, Computer Network,

Computing, Electronics, and Control, 2(4), 327–

336.

Karnalim, O., & Ayub, M. (2018). A Quasi-Experimental

Design to Evaluate the Use of PythonTutor on

Programming Laboratory Session. International

Journal of Online Engineering (IJOE), 14(02),

155. https://doi.org/10.3991/ijoe.v14i02.8067

Kumalija, E. J., Fatih, Y., & Sun, Y. (2019). STUDENTS’

PERCEPTION TOWARDS PROGRAM

VISUALIZATION ON SMARTPHONE - CASE

OF SUNLAB INITIAL INVESTIGATION. 15th

International Conference on Mobile Learning

2019, 42–48.

https://doi.org/10.33965/ml2019_201903L006

Kumalija, E., Yi, S., & Fatih, Y. (2018). Dynamic Program

Visualization on Android Smartphones for Novice

Java Programmers. International Association for

Development of the Information Society.

Laakso, M.-J., Kaila, E., & Rajala, T. (2018). ViLLE —

Collaborative Education Tool: Designing and

Utilizing an Exercise-based Learning Environment.

Education and Information Technologies, 23(4),

1655–1676. https://doi.org/10.1007/s10639-017-

9659-1

Lahtinen, E., & Ahoniemi, T. (2005). Visualizations to

support programming on different levels of

cognitive development. Proceedings of the Koli

Calling 2005 Conference on Computer Science

Education, November 2005, Koli, Finland, 87–94.

Lahtinen, S.-, Sutinen, E., Tarhio, J., & Tuovinen, A.-.

(1997). Object-oriented visualization of program

logic. Proceedings of TOOLS USA 97.

International Conference on Technology of Object

Oriented Systems and Languages, 76–88.

https://doi.org/10.1109/TOOLS.1997.654702

Lee, E. A., & Parks, T. M. (1995). Dataflow process

networks. Proceedings of the IEEE, 83(5), 773–

801. https://doi.org/10.1109/5.381846

LEGO® Education WeDo 2.0 Core Set. (n.d.). Retrieved

September 9, 2019, from

https://education.lego.com/en-us/products/lego-

education-wedo-2-0-core-set-/45300

Levy, R. B.-B., Ben-Ari, M., & Uronen, P. A. (2003). The

Jeliot 2000 program animation system. Computers

& Education, 40(1), 1–15.

https://doi.org/10.1016/S0360-1315(02)00076-3

Lister, R., Simon, B., Thompson, E., Whalley, J. L., &

Prasad, C. (2006). Not seeing the forest for the

trees: Novice programmers and the SOLO

taxonomy. ACM SIGCSE Bulletin, 38(3), 118–122.

Luxton-Reilly, A. (2016). Learning to Program is Easy.

Proceedings of the 2016 ACM Conference on

 28

Innovation and Technology in Computer Science

Education, 284–289.

https://doi.org/10.1145/2899415.2899432

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A.,

Giannakos, M., Kumar, A. N., … Szabo, C. (2018).

Introductory Programming: A Systematic

Literature Review. Proceedings Companion of the

23rd Annual ACM Conference on Innovation and

Technology in Computer Science Education, 55–

106. https://doi.org/10.1145/3293881.3295779

Ma, L., Ferguson, J. D., Roper, M., Ross, I., & Wood, M.

(2008). Using Cognitive Conflict and Visualisation

to Improve Mental Models Held by Novice

Programmers. SIGCSE Bull., 40(1), 342–346.

https://doi.org/10.1145/1352322.1352253

Ma, L., Ferguson, J., Roper, M., Ross, I., & Wood, M.

(2009). Improving the Mental Models Held by

Novice Programmers Using Cognitive Conflict and

Jeliot Visualisations. Proceedings of the 14th

Annual ACM SIGCSE Conference on Innovation

and Technology in Computer Science Education,

166–170. https://doi.org/10.1145/1562877.1562931

Maletic, J. I., Marcus, A., & Collard, M. L. (2002). A task

oriented view of software visualization.

Proceedings First International Workshop on

Visualizing Software for Understanding and

Analysis, 32–40.

https://doi.org/10.1109/VISSOF.2002.1019792

Maloney, J., Resnick, M., Rusk, N., Silverman, B., &

Eastmond, E. (2010). The Scratch Programming

Language and Environment. Trans. Comput. Educ.,

10(4), 16:1–16:15.

https://doi.org/10.1145/1868358.1868363

Mason, D., & Dave, K. (2017). Block-based versus flow-

based programming for naive programmers. 2017

IEEE Blocks and Beyond Workshop (B B), 25–28.

https://doi.org/10.1109/BLOCKS.2017.8120405

Moons, J., & De Backer, C. (2013). The design and pilot

evaluation of an interactive learning environment

for introductory programming influenced by

cognitive load theory and constructivism.

Computers & Education, 60(1), 368–384.

https://doi.org/10.1016/j.compedu.2012.08.009

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004).

Visualizing Programs with Jeliot 3. Proceedings of

the Working Conference on Advanced Visual

Interfaces, 373–376.

https://doi.org/10.1145/989863.989928

Moreno, A., Sutinen, E., Bednarik, R., & Myller, N. (2007).

Conflictive Animations As Engaging Learning

Tools. Proceedings of the Seventh Baltic Sea

Conference on Computing Education Research -

Volume 88, 203–206. Retrieved from

http://dl.acm.org/citation.cfm?id=2449323.244935

2

Moreno, A., Sutinen, E., & Joy, M. (2014). Defining and

Evaluating Conflictive Animations for

Programming Education: The Case of Jeliot

ConAn. Proceedings of the 45th ACM Technical

Symposium on Computer Science Education, 629–

634. https://doi.org/10.1145/2538862.2538888

Moreno, A., Sutinen, E., & Sedano, C. I. (2013). A game

concept using conflictive animations for learning

programming. 2013 IEEE International Games

Innovation Conference (IGIC), 175–178. IEEE.

Mosconi, M., & Porta, M. (2000). Iteration constructs in

data-flow visual programming languages.

Computer Languages, 26(2), 67–104.

https://doi.org/10.1016/S0096-0551(01)00009-1

Myers, B. A. (1990). Taxonomies of visual programming

and program visualization. Journal of Visual

Languages & Computing, 1(1), 97–123.

https://doi.org/10.1016/S1045-926X(05)80036-9

Myller, N., Bednarik, R., Sutinen, E., & Ben-Ari, M. (2009).

Extending the Engagement Taxonomy: Software

Visualization and Collaborative Learning. Trans.

Comput. Educ., 9(1), 7:1–7:27.

https://doi.org/10.1145/1513593.1513600

Nagae, A., & Kagawa, K. (2014). DEVELOPMENT OF A

VISUAL DEBUGGER FOR C IMPLEMENTED

IN JAVASCRIPT. Theory and Practice of

Computation: Proceedings of Workshop on

 29

Computation: Theory and Practice WCTP2013,

208–217. https://doi.org/DOI:

10.1142/9789814612883_0015

Naps, T. L., Rößling, G., Almstrum, V., Dann, W.,

Fleischer, R., Hundhausen, C., … Velázquez-

Iturbide, J. Á. (2002). Exploring the Role of

Visualization and Engagement in Computer

Science Education. SIGCSE Bull., 35(2), 131–152.

https://doi.org/10.1145/782941.782998

Nascimento, M. D. do, Oliveira, F. C. d M. B., Alves, S. S.

A., Freitas, A. T. de, Gomes, L. A. C. B., & Matos,

A. S. de. (2017). A comparative study of deaf and

non-deaf students’ performance when using a

Visual Java Debugger. 2017 IEEE Frontiers in

Education Conference (FIE), 1–8.

https://doi.org/10.1109/FIE.2017.8190514

Nathasya, R. A., Karnalim, O., & Ayub, M. (2019).

Integrating program and algorithm visualisation for

learning data structure implementation. Egyptian

Informatics Journal.

https://doi.org/10.1016/j.eij.2019.05.001

Noone, M., & Mooney, A. (2018). Visual and textual

programming languages: A systematic review of

the literature. Journal of Computers in Education,

5(2), 149–174. https://doi.org/10.1007/s40692-018-

0101-5

Orange3. (n.d.). Retrieved April 30, 2018, from

https://orange.biolab.si

Pareja-Flores, C., Urquiza-Fuentes, J., & Velázquez-

Iturbide, J. Á. (2007). WinHIPE: An IDE for

Functional Programming Based on Rewriting and

Visualization. SIGPLAN Not., 42(3), 14–23.

https://doi.org/10.1145/1273039.1273042

Pawelczak, D., & Baumann, A. (2014). Virtual-C - a

programming environment for teaching C in

undergraduate programming courses. 2014 IEEE

Global Engineering Education Conference

(EDUCON), 1142–1148.

https://doi.org/10.1109/EDUCON.2014.7096836

Pawelczak, Dieter. (2016). Benefits of a Testing Framework

in Undergraduate C Programming Courses. 2nd

International Conference on Higher Education

Advances,HEAd’16, 21-23 June 2016, València,

Spain, 228, 215–221.

https://doi.org/10.1016/j.sbspro.2016.07.032

Pawelczak, Dieter, Baumann, A., & Schmudde, D. (2015).

A new Testing Framework for C-Programming

Exercises and Online-Assessments. Proceedings of

the International Conference on Frontiers in

Education: Computer Science and Computer

Engineering (FECS), 279. The Steering Committee

of The World Congress in Computer Science,

Computer ….

Pears, A., & Rogalli, M. (2011). mJeliot: A Tool for

Enhanced Interactivity in Programming Instruction.

Proceedings of the 11th Koli Calling International

Conference on Computing Education Research,

16–22. https://doi.org/10.1145/2094131.2094135

Price, B. A., Baecker, R. M., & Small, I. S. (1993). A

Principled Taxonomy of Software Visualization.

Journal of Visual Languages & Computing, 4(3),

211–266. https://doi.org/10.1006/jvlc.1993.1015

PyCharm: The Python IDE for Professional Developers by

JetBrains. (n.d.). Retrieved August 28, 2019, from

JetBrains website:

https://www.jetbrains.com/pycharm/

PyTorch. (n.d.). Retrieved September 18, 2019, from

https://www.pytorch.org

Real-time ASP.NET with SignalR | .NET. (n.d.). Retrieved

September 17, 2019, from

https://dotnet.microsoft.com/apps/aspnet/signalr

Roman, G.-, & Cox, K. C. (1993). A taxonomy of program

visualization systems. Computer, 26(12), 11–24.

https://doi.org/10.1109/2.247643

S. Xinogalos. (2013). Using flowchart-based programming

environments for simplifying programming and

software engineering processes. 2013 IEEE Global

Engineering Education Conference (EDUCON),

1313–1322.

https://doi.org/10.1109/EduCon.2013.6530276

Sajaniemi, J. (2002). An empirical analysis of roles of

variables in novice-level procedural programs.

 30

Proceedings IEEE 2002 Symposia on Human

Centric Computing Languages and Environments,

37–39. https://doi.org/10.1109/HCC.2002.1046340

Sajaniemi, Jorma, Byckling, P., & Gerdt, P. (2006).

Metaphor-based Animation of OO Programs.

Proceedings of the 2006 ACM Symposium on

Software Visualization, 173–174.

https://doi.org/10.1145/1148493.1148530

Sajaniemi, Jorma, Byckling, P., & Gerdt, P. (2007).

Animation Metaphors for Object-Oriented

Concepts. Electronic Notes in Theoretical

Computer Science, 178, 15–22.

https://doi.org/10.1016/j.entcs.2007.01.037

Sajaniemi, Jorma, & Kuittinen, M. (2003). Program

Animation Based on the Roles of Variables.

Proceedings of the 2003 ACM Symposium on

Software Visualization, 7–ff.

https://doi.org/10.1145/774833.774835

Santos, A. L. (2018). Enhancing Visualizations in

Pedagogical Debuggers by Leveraging on Code

Analysis. Proceedings of the 18th Koli Calling

International Conference on Computing Education

Research, 11:1–11:9.

https://doi.org/10.1145/3279720.3279732

Santos, A. L., & Sousa, H. S. (2017). PandionJ: A

Pedagogical Debugger Featuring Illustrations of

Variable Tracing and Look-ahead. Proceedings of

the 17th Koli Calling International Conference on

Computing Education Research, 195–196.

https://doi.org/10.1145/3141880.3141911

Schumacher, R. M., & Czerwinski, M. P. (1992). Mental

Models and the Acquisition of Expert Knowledge.

In R. R. Hoffman (Ed.), The Psychology of

Expertise (pp. 61–79).

SeeC. (n.d.). Retrieved August 30, 2019, from https://seec-

team.github.io/seec/seec-view.html

Shi, N., Min, Z., & Zhang, P. (2017). Effects of visualizing

roles of variables with animation and IDE in novice

program construction. Telematics and Informatics,

34(5), 743–754.

https://doi.org/10.1016/j.tele.2017.02.005

Shin, W.-C. (2018). A Study on the Effects of Visualization

Tools on Debugging Program and Extending

Functionality. International Journal of Advanced

Science and Technology, 115, 149–160.

https://doi.org/10.14257/ijast.2018.115.14

Silva, L. C., Oliveira, F. C. d M. B., Oliveira, A. C. d, &

Freitas, A. T. d. (2014). Introducing the JLoad: A

Java Learning Object to Assist the Deaf. 2014

IEEE 14th International Conference on Advanced

Learning Technologies, 579–583.

https://doi.org/10.1109/ICALT.2014.169

Sirkiä, T. (2016). Jsvee & Kelmu: Creating and Tailoring

Program Animations for Computing Education.

2016 IEEE Working Conference on Software

Visualization (VISSOFT), 36–45.

https://doi.org/10.1109/VISSOFT.2016.24

Sirkiä, T., & Sorva, J. (2015). Tailoring Animations of

Example Programs. Proceedings of the 15th Koli

Calling Conference on Computing Education

Research, 147–151.

https://doi.org/10.1145/2828959.2828965

Sorva, J. (2013). Notional machines and introductory

programming education. ACM Transactions on

Computing Education, 13(2), 1–31.

https://doi.org/10.1145/2483710.2483713

Sorva, J., Karavirta, V., & Malmi, L. (2013). A Review of

Generic Program Visualization Systems for

Introductory Programming Education. Trans.

Comput. Educ., 13(4), 15:1–15:64.

https://doi.org/10.1145/2490822

Sorva, J., Lönnberg, J., & Malmi, L. (2013). Students’ ways

of experiencing visual program simulation.

Computer Science Education, 23(3), 207–238.

https://doi.org/10.1080/08993408.2013.807962

Sorva, J., & Sirkia, T. (2010). UUhistle: A software tool for

visual program simulation. Proceedings of the 10th

Koli Calling International Conference on

Computing Education Research Koli Calling 10,

49–54. https://doi.org/10.1145/1930464.1930471

 31

Sousa, T. B. (2012). Dataflow programming concept,

languages and applications. Doctoral Symposium

on Informatics Engineering, 130.

Stasko, J. T., & Patterson, C. (1992). Understanding and

characterizing software visualization systems.

Proceedings IEEE Workshop on Visual Languages,

3–10. https://doi.org/10.1109/WVL.1992.275790

Stefik, A., & Hanenberg, S. (2014). The Programming

Language Wars: Questions and Responsibilities for

the Programming Language Community.

Proceedings of the 2014 ACM International

Symposium on New Ideas, New Paradigms, and

Reflections on Programming & Software, 283–299.

https://doi.org/10.1145/2661136.2661156

Subramanian, K., Maas, J., Ellers, M., Wacharamanotham,

C., Voelker, S., & Borchers, J. (2018). StatWire:

Visual Flow-based Statistical Programming.

Extended Abstracts of the 2018 CHI Conference on

Human Factors in Computing Systems,

LBW104:1–LBW104:6.

https://doi.org/10.1145/3170427.3188528

Sulistiani, L., & Karnalim, O. (2018). An Embedding

Technique for Language-Independent Lecturer-

Oriented Program Visualization. EMITTER

International Journal of Engineering Technology,

6(1), 92–104.

https://doi.org/10.24003/emitter.v6i1.234

Suzuki, R., Soares, G., Head, A., Glassman, E., Reis, R.,

Mongiovi, M., … Hartmann, B. (2017). TraceDiff:

Debugging unexpected code behavior using trace

divergences. 2017 IEEE Symposium on Visual

Languages and Human-Centric Computing

(VL/HCC), 107–115.

https://doi.org/10.1109/VLHCC.2017.8103457

Tang, T., Rixner, S., & Warren, J. (2014). An Environment

for Learning Interactive Programming.

Proceedings of the 45th ACM Technical Symposium

on Computer Science Education, 671–676.

https://doi.org/10.1145/2538862.2538908

Tanimoto, S. L. (1990). VIVA: A Visual Language for

Image Processing. J. Vis. Lang. Comput., 1(2),

127–139. https://doi.org/10.1016/S1045-

926X(05)80012-6

Tekdal, M. (2013). The Effect of an Example-Based

Dynamic Program Visualization Environment on

Students’ Programming Skills. Journal of

Educational Technology & Society, 16(3), 400–

410.

TensorFlow. (n.d.). Retrieved September 18, 2019, from

TensorFlow website: https://www.tensorflow.org/

Tezuka, D., Kogure, S., Noguchi, Y., Yamashita, K.,

Konishi, T., & Itoh, Y. (2016). GUI based

environment to support writing and debugging

rules for a program visualization tool. 303–305.

Retrieved from

https://www2.scopus.com/inward/record.uri?eid=2-

s2.0-

85019007751&partnerID=40&md5=ea514a8f4ba9

ddf5c7b0c91da9105bf9

Thayer, K., Guo, P. J., & Reinecke, K. (2018). The Impact

of Culture on Learner Behavior in Visual

Debuggers. Proceedings of the IEEE Symposium

on Visual Languages and Human-Centric

Computing (VL/HCC).

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. (2012).

Comparing the effectiveness of different

educational uses of program animations.

Proceedings of the 17th ACM Annual Conference

on Innovation and Technology in Computer

Science Education, 174–179. ACM.

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. Á. (2013).

Toward the effective use of educational program

animations: The roles of student’s engagement and

topic complexity. Computers & Education, 67,

178–192.

https://doi.org/10.1016/j.compedu.2013.02.013

Wongsuphasawat, K., Smilkov, D., Wexler, J., Wilson, J.,

Mané, D., Fritz, D., … Wattenberg, M. (2018).

Visualizing Dataflow Graphs of Deep Learning

Models in TensorFlow. IEEE Transactions on

Visualization and Computer Graphics, 24(1), 1–12.

https://doi.org/10.1109/TVCG.2017.2744878

 32

Xie, C., Qi, H., Ma, L., & Zhao, J. (2019). DeepVisual: A

Visual Programming Tool for Deep Learning

Systems. Proceedings of the 27th International

Conference on Program Comprehension, 130–134.

https://doi.org/10.1109/ICPC.2019.00028

Xue, G., Yang, Q., & Xing, J. (2017). A survey of graphical

programming language and its applications in

intelligent buildings. 2017 Chinese Automation

Congress (CAC), 6822–6828.

https://doi.org/10.1109/CAC.2017.8244006

Yamamoto, R., Anzai, Y., Kogure, S., Noguchi, Y.,

Yamashita, K., Konishi, T., & Itoh, Y. (2017).

Learning Environment for Recursive Functions by

Visualization of Execution Process.

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y.,

Konishi, T., & Itoh, Y. (2015). Educational

Practice of Algorithm using Learning Support

System with Visualization of Program Behavior.

Proceedings of the 23rd International Conference

on Computers in Education, 632–640.

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y.,

Konishi, T., & Itoh, Y. (2016). Practices of

algorithm education based on discovery learning

using a program visualization system. Research

and Practice in Technology Enhanced Learning,

11(1), 15. https://doi.org/10.1186/s41039-016-

0041-5

Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y.,

Konishi, T., & Itoh, Y. (2017). Classroom practice

for understanding pointers using learning support

system for visualizing memory image and target

domain world. Research and Practice in

Technology Enhanced Learning, 12(1), 17.

https://doi.org/10.1186/s41039-017-0058-4

Yamashita, K., Tezuka, D., Kogure, S., Noguchi, Y.,

Konishi, T., & Itoh, Y. (2018). A Learning Support

System for Visualizing Behaviors of Students’

Programs Based on Teachers’ Intents of

Instruction. Proceedings of the 26th International

Conference on Computers in Education, 761–766.

YAN, Y., HARA, K., KAZUMA, T., HISADA, Y., & HE,

A. (2018). PROVIT-CI: A Classroom-Oriented

Educational Program Visualization Tool. IEICE

Transactions on Information and Systems,

E101.D(2), 447–454.

https://doi.org/10.1587/transinf.2017EDK0002

Yan, Y., Nakano, H., Hara, K., Kazuma, T., & He, A.

(2016). A Web Service for C Programming

Learning and Teaching. 2016 10th International

Conference on Complex, Intelligent, and Software

Intensive Systems (CISIS), 414–419.

https://doi.org/10.1109/CISIS.2016.70

Yan, Yu, Hiroto, N., Kohei, H., Shota, S., & He, A. (2014).

A C Programming Learning Support System and

Its Subjective Assessment. Proceedings of the 2014

IEEE International Conference on Computer and

Information Technology, 561–566.

https://doi.org/10.1109/CIT.2014.23

Yang, J., Lee, Y., & Chang, K. H. (2017). Initial Evaluation

of JaguarCode: A Web-Based Object-Oriented

Programming Environment with Static and

Dynamic Visualization. 2017 IEEE 30th

Conference on Software Engineering Education

and Training (CSEE T), 152–161.

https://doi.org/10.1109/CSEET.2017.32

Yang, J., Lee, Y., Gandhi, D., & Valli, S. G. (2017).

Synchronized UML diagrams for object-oriented

program comprehension. 2017 12th International

Conference on Computer Science and Education

(ICCSE), 12–17.

https://doi.org/10.1109/ICCSE.2017.8085455

Yang, J., Lee, Y., Hicks, D., & Chang, K. H. (2015).

Enhancing object-oriented programming education

using static and dynamic visualization. 2015 IEEE

Frontiers in Education Conference (FIE), 1–5.

https://doi.org/10.1109/FIE.2015.7344152

Yang, Jeong-sug. (2016). JavelinaCode: A Web-Based

Object-Oriented Programming Environment with

Static and Dynamic Visualization (PhD

Dissertation).

 33

Zhang, K. (2007). Visual Languages and Applications.

Retrieved from

https://www.springer.com/gp/book/978038729813

9

Ziarek, L., Jayaraman, B., Lessa, D., & Swaminathan, J.

(2016). Runtime Visualization and Verification in

JIVE. In Y. Falcone & C. Sánchez (Eds.), Runtime

Verification (pp. 493–497). Cham: Springer

International Publishing.

APPENDIX

The table in this appendix contains a list of the PV related
papers that we identified through literature search.

TABLE 8 PAPERS IDENTIFIED THROUGH LITERATURE REVIEW

Title Authors Publication year PV

1 Novis A notional machine implementation for teaching

introductory programming

Berry, M., & Kölling, M. 2016 BlueJ Novis

2 The state of play: A notional machine for learning
programming

Berry, M., Kölling, M. 2014 BLueJ Novis

3 The design and implementation of a notional machine for

teaching introductory programming

Berry, M., Kölling, M. 2013 BlueJ Novis

4 An environment for learning interactive programming Tang, T., Rixner, S., & Warren,

J.

2014 CodeSkulptor

5 The effect of an example-based dynamic program

visualization environment on students' programming skills

Tekdal, M. 2013 EDPVE

6 Visualization of execution of programming statements Al-Fedaghi, S., Alrashed, A. 2014 FM Visualization/TM
Visualization

7 A comparative study of deaf and non-deaf students'

performance when using a visual Java debugger

Do Nascimento, M.D., Oliveira,

F.C.D.M.B., Alves, S.S.A., De
Freitas, A.T., Gomes, L.A.C.B.,

De Matos, A.S.

2017 JAD & Jload

8 Synchronized Static and Dynamic Visualization in a Web-
Based Programming Environment

Jeong Yang, Young Lee, &
Hicks, D.

2016 JaguarCode

9 Initial Evaluation of JaguarCode: A Web-Based Object-

Oriented Programming Environment with Static and

Dynamic Visualization

Yang, J., Lee, Y., & Chang, K.

H.

2017 JavelinaCode/JaguarC

ode

10 Synchronized UML diagrams for object-oriented program

comprehension

J. Yang; Y. Lee; D. Gandhi; S.

G. Valli

2017 JavelinaCode/JaguarC

ode

11 Impact of Static and Dynamic Visualization in Improving

OOP Concepts

Earwood, B., Jeong Yang, &

Young Lee.

2016 JavelinaCode/JaguarC

ode

12 JavelinaCode- A Web-Based Object-Oriented

Programming Environment with Static and Dynamic

Visualization

Yang, Jeong-sug. 2016 JavelinaCode/JaguarC

ode

13 Enhancing Object-Oriented Programming Education using
Static and Dynamic Visualization

Yang, J., Lee, Y., Hicks, D., &
Chang, K. H.

2015 JavelinaCode/JaguarC
ode

14 Defining and evaluating conflictive animations for

programming education: The case of Jeliot ConAn

Moreno, A., Sutinen, E., Joy, M. 2014 Jeliot ConAn

15 A game concept using conflictive animations for learning
programming

Moreno, Andres; Sutinen,
Erkki; Sedano, Carolina Islas

2013 Jeliot ConAn

16 Dynamic program visualizations - An experience report Cross II, J.H., Hendrix, T.D.,

Barowski, L.A., Umphress,
D.A.

2014 jGrasp

17 Compact visualization of Java program execution Jayaraman, S., Jayaraman, B., &

Lessa, D.

2017 JIVE

18 Runtime Visualization and Verification in JIVE Ziarek, L., Jayaraman, B.,
Lessa, D., & Swaminathan, J.

2016 JIVE

19 An Embedding Technique for Language-Independent

Lecturer-Oriented Program Visualization Tool

Sulistiani, Lisan; Karnalim,

Oscar

2018 LISN

20 A study on the effects of visualization tools on debugging
program and extending functionality

Shin, W.-C. 2018 ObjectVisualizer

21 Omnicode A Novice-Oriented Live Programming

Environment with Always-On Run-Time Value

Visualizations

Kang, H., & Guo, P. J. 2017 Omnicode

22 A quasi-experimental design to evaluate the use of

pythontutor on programming laboratory session

Karnalim, O., Ayub, M. 2018 OPT

23 The impact of culture on learner behavior in visual
debuggers

Thayer, K., Guo, P.J., Reinecke,
K.

2018 OPT

24 The Effectiveness of a Program Visualization Tool on

Introductory Programming - A Case Study with

PythonTutor

Karnalim, O., & Ayub, M. 2017 OPT

25 The Use of PythonTutor on Programming Laboratory

Session- Student Perspectives

Karnalim, O., & Ayub, M. 2017 OPT

26 Online python tutor: Embeddable web-based program

visualization for cs education

Guo, P.J. 2013 OPT

 34

27 Codechella: Multi-user program visualizations for real-
time tutoring and collaborative learning

Guo, P.J., White, J., Zanelatto,
R.

2015 OPT (addon)

28 Codepourri: Creating visual coding tutorials using a

volunteer crowd of learners

Gordon, M., Guo, P.J. 2015 OPT (addon)

29 Concept-Driven Generation of Intuitive Explanations of
Program Execution for a Visual Tutor

Azadmanesh, M., Hauswirth,
M.

2017 OPT
(codeexplanations)

30 OPT+ Graph: Detection of Graph Data Structure on

Program Visualization Tool to Support Learning

Dien, Habibie Ed; Asnar,

Yudistira Dwi Wardhana

2018 OPT (graph data

structure)

31 TraceDiff: Debugging unexpected code behavior using
trace divergences

R. Suzuki; G. Soares; A. Head;
E. Glassman; R. Reis; M.

Mongiovi; L. D'Antoni; B.

Hartmann

2017 OPT (tracediff)

32 Enhancing Visualizations in Pedagogical Debuggers by
Leveraging on Code Analysis

Santos, A. L. 2018 PandionJ

33 PandionJ- a pedagogical debugger featuring illustrations of

variable tracing and look-ahead

Santos, A. L., & Sousa, H. S. 2017 PandionJ

34 Integrating program and algorithm visualisation for
learning data structure implementation

Nathasya, R.A., Karnalim, O.,
Ayub, M.

2019 PITON

35 Combining program visualization with programming

workspace to assist students for completing programming
laboratory task

Elvina, E., Karnalim, O., Ayub,

M., Wijanto, M.C.

2018 PITON

36 Effects of Visualizing Roles of Variables with Animation

and IDE in Novice Program Construction

Shi, N., Min, Z., & Zhang, P. 2017 PlanAni

37 PROVIT-CI: A Classroom-Oriented Educational Program
Visualization Tool

Yan, Yu; Hara, Kohei; Kazuma,
Takenobu; Hisada, Yasuhiro;

He, Aiguo

2018 PROVIT

38 A Web Service for C Programming Learning and Teaching Yan, Y., Nakano, H., Hara, K.,
Kazuma, T., & He, A.

2016 PROVIT

39 A C programming learning support system and its

subjective assessment

Yan, Y., Hiroto, N., Kohei, H.,

Shota, S., He, A.

2014 PROVIT

40 PVC: Visualizing C programs on web browsers for novices Ishizue, R., Washizaki, H.,
Sakamoto, K., Fukazawa, Y.

2018 PVC

41 A systematic literature review of student engagement in

software visualization: a theoretical perspective

Al-Sakkaf, Abdullah; Omar,

Mazni; Ahmad, Mazida

2019 Review

42 Learning principles in program visualizations: A
systematic literature review

Hidalgo-Céspedes, J., Marín-
Raventós, G., Lara-Villagrán,

V.

2016 Review

43 A review of generic program visualization systems for

introductory programming education

Sorva, J., Karavirta, V., Malmi,

L.

2013 Review

44 Program Visualization and Explanation for Novice C

Programmers

Matthew Heinsen Egan and

Chris McDonald

2014 SeeC

45 Runtime Error Checking for Novice C Programmers Egan, M. H., & McDonald, C. 2013 SeeC

46 Students’ perception towards program visualization on

smartphone - case of sunlab initial investigation

Kumalija, E.J., Fatih, Y., Sun,

Y.

2019 SunLab

47 Dynamic program visualization on android smartphones

for novice Java programmers

Kumalija, E., Yi, S., Fatih, Y. 2018 SunLab

48 A Learning Support System for Visualizing Behaviors of
Students' Programs Based on Teachers' Intents of

Instruction

Yamashita, Koichi; Tezuka,
Daiki; Kogure, Satoru;

Noguchi, Yasuhiro; Konishi,

Tatsuhiro; Itoh, Yukihiro

2018 TEDViT

49 Algorithm Learning by Comparing Visualized Behavior of
Programs

Ihara, Daiki; Kogure, Satoru;
Noguchi, Yasuhiro; Yamashita,

Koichi; Konishi, Tatsuhiro;
Itoh, Yukihiro

2017 TEDViT

50 Classroom practice for understanding pointers using

learning support system for visualizing memory image and

target domain world

Yamashita, K., Fujioka, R.,

Kogure, S., Noguchi, Y.,

Konishi, T., Itoh, Y.

2017 TEDViT

51 Learning Environment for Recursive Functions by

Visualization of Execution Process

Yamamoto, Raiya; Anzai,

Yasuhiro; Kogure, Satoru;

Noguchi, Yasuhiro; Yamashita,
Koichi; Konishi, Tatsuhiro;

Itoh, Yukihiro

2017 TEDViT

52 GUI based environment to support writing and debugging

rules for a program visualization tool

Tezuka, D., Kogure, S.,

Noguchi, Y., Yamashita, K.,

Konishi, T., Itoh, Y.

2016 TEDViT

53 Practices of algorithm education based on discovery

learning using a program visualization system

Yamashita, K., Fujioka, R.,

Kogure, S., Noguchi, Y.,
Konishi, T., Itoh, Y.

2016 TEDViT

54 Educational Practice of Algorithm using Learning Support

System with Visualization of Program Behavior

Yamashita, K., Fujioka, R.,

Kogure, S., Noguchi, Y.,

Konishi, T., & Itoh, Y.

2015 TEDViT

55 Introducing Thonny, a Python IDE for Learning

Programming

Aivar Annamaa 2015 Thonny

56 Students' ways of experiencing visual program simulation Sorva, J., Lönnberg, J., Malmi,

L.

2013 UUhistle

 35

57 Ville--collaborative-education-tool Laakso, M.-J., Kaila, E., &
Rajala, T.

2018 Ville

58 Students' engagement with the visualization tool VIP in

light of activity theory

Isohanni, E., & Knobelsdorf, M. 2013 VIP

59 Benefits of a testing framework in undergraduate C
programming courses

Pawelczak, Dieter 2016 Virtual-C

60 A new Testing Framework for C-Programming Exercises

and Online-Assessments

Pawelczak, Dieter, Baumann,

A., & Schmudde, D.

2015 Virtual-C

61 Virtual-C - a programming environment for teaching C in
undergraduate programming courses

Pawelczak, Dieter; Baumann,
Andrea

2014 Virtual-C

62 Toward the effective use of educational program

animations: The roles of student's engagement and topic

complexity

Urquiza-Fuentes, J., Velázquez-

Iturbide, J.Á.

2013 WinHIPE

63 DEVELOPMENT OF A VISUAL DEBUGGER FOR C

IMPLEMENTED IN JAVASCRIPT

Nagae, Akihiko; Kagawa, Koji 2015 (Nagae, Koji)

64 An integrated approach to build programming

competencies through spoken tutorial workshops

Eranki, K.L.N., Moudgalya,

K.M.

2013

 .

