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Abstract—Different types of visualizations have been 

developed to assist novices with learning to program. These 

include program visualization systems and visual programming 

languages, among others. Program visualizations are used to 

represent how a program is executed by the notional machine; 

an abstract machine formed from the concepts of a 

programming language. Visual programming languages 

(VPLs), on the other hand, attempt to simplify learning to 

program by providing visual representations of programming 

concepts. They visually represent the structure of a program, 

and sometimes visualize its execution. We focus mostly on 

dataflow visual programming languages as a subcategory of 

VPLs. We provide a literature review on program visualizations 

from 2013 to July 2019. Afterwards, we take a look at different 

taxonomies of VPLs and describe dataflow visual programming 

languages. The paper also discusses a visual dataflow language 

for learning programming and a program visualization system 

for actor programs.  

Keywords—actor programs, education, dataflow visual 

language, program visualization, review 

I. INTRODUCTION 

Numerous studies have reported that learning to program 
is difficult. Programming requires novices to possess complex 
problem-solving skills as well as learn the syntax and logic of 
programming constructs. Introductory programming courses 
often have a set of learning outcomes that students need to 
achieve. A typical CS1 course may teach students concepts 
such as variables, branching, loops and functions. Novices are 
then expected to master each concept to some degree which 
they demonstrate by solving problems.  

It is suggested that course difficulty depends on "how 
much a student should be able to achieve" for its duration 
(Luxton-Reilly, 2016). Lower teacher expectations or 
teaching fewer concepts may make introductory programming 
easier. However, lowering expectations could lead to a 
situation where students' do not master the concepts at a level 
required by a future course. Reducing the number of concepts 
in a CS1 course may mean moving them to a later course 
which may introduce problems of its own. Additionally, 
students that are not enrolled in computer science, but have 
some computing course, may already be taught only the 
basics.  

Much research in programming education is concerned 
with improving the ways to teach introductory programming. 
Such studies may be divided into five categories: theories, 
orientation, delivery, tools and infrastructure (Luxton-Reilly 
et al., 2018). Additionally, the choice of programming 
language for a first course is the topic of much debate (Stefik 
& Hanenberg, 2014). Visual programming languages (VPL) 
have been developed to reduce the effort of learning 

programming syntax and errors related to it. In this paper, we 
are interested in visual programming languages (VPLs) and 
generic program visualization (PV) systems. Their aim is to 
reduce the barrier of learning to program.  

Literature reviews provide a way to inform researchers and 
educators of the current trends and tools available to improve 
their teaching and students' learning experience. Therefore, 
we conducted a literature review of program visualization 
systems. We discuss each tool with regard to the engagement 
taxonomy provided by Sorva, its features and evaluations 
(Sorva, Karavirta, & Malmi, 2013). We do not include 
program visualization systems that have been recognized as 
inactive in previous literature reviews.  

Existing engagement taxonomies for PV systems are 
discussed in this paper. Each taxonomy defines certain 
engagement levels that describe different ways learners can 
engage with the visualization. Higher engagement levels 
should often require greater cognitive effort and lead to better 
learning (Naps et al., 2002).  

Most PV systems share a certain set of features, such as 
stepping through the execution and highlighting the current 
instruction. We developed a dataflow programming language 
(DFVPL) for introductory programming that supports some of 
the features found in PVs. The system was later extended to 
support the demonstration of programs written in the 
functional programming paradigm. We used the system in an 
introductory and functional programming setting and provide 
a brief report on our experiences. 

Finally, we describe a system for visualizing the 
interaction between actors in the actor model. The system can 
also be extended to visualize the communication between 
other types of entities such as objects and agents. The results 
of the pilot study we conducted seem promising (Čolak & 
Čuvić, 2019).   

The remainder of this paper is organized as follows. 
Section II gives theoretical background about the notional 
machine, and section III discusses visualizations and their 
relationship to the notional machine. In section IV we give a 
brief overview of existing engagement taxonomies. Section V 
discusses previous literature reviews on program 
visualizations, and section VI describes our methodology. 
Program visualization systems, their features and evaluation 
are described in section VII. Visual programming languages 
are discussed in more detail in section VIII with a focus on 
DFVPLs. Section IX introduces the visualization systems that 
we have developed and describes our experiences and studies 
with them. Section X describes recent DFVPLs with 
application in data science. Section XI discusses our 
conclusion and describes future work. 

A review of program visualizations and design 

of a visual dataflow language 
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II. THE NOTIONAL MACHINE 

Rather than just writing computer programs, programming 
includes reading, understanding, and tracing the execution of 
already written code. These skills enable programmers to find 
bugs, improve the existing codebase, and add new 
functionality. However, programmers require a mental model 
of the system to do so. The same is true for novices.  

Mental models are mental structures that one possesses 
about a system (Sorva, 2013). In the case of programming, that 
system is the machine that executes the program. Mental 
models are runnable, which allows programmers to use them 
to simulate program execution in memory.  

Useful mental models are ones that are at an appropriate 
level of abstraction (Hidalgo-Céspedes, Marín-Raventós, & 
Lara-Villagrán, 2016; Sorva, 2013). If a model is at a low level 
of abstraction, it may not be trackable due to many variables 
and states. A model at a high level of abstraction may exclude 
essential information. Programmers reason about a program at 
the level of abstraction provided by the programming 
language. These abstractions form a new machine, that is 
called a notional machine. Different programming languages 
can have different notional machines. Furthermore, a single 
programming language is not limited to a single machine. E.g., 
an object-oriented programming (OOP) language may have 
two notional machines, one for reasoning about the behavior 
of a method inside an object, and another to reason about the 
interactions between objects. Some programming languages, 
such as Scala, which support OOP and functional 
programming (FP) may have an additional notional machine. 
This machine might allow us to reason about a program in 
terms of data transformations in a pipeline of functions.  

Novices need to acquire a correct mental model of the 
notional machine to write correct programs (Sorva, 2013). 
However, their models are often faulty, based on superficial 
language features, and contain misconceptions. We define a 
misconception as an incomplete or incorrect understanding of 
a programming concept. Du Bouley (1986) found that the 
causes of most misconceptions are faulty understandings of 
the notional machine. While the formation of mental models 
is intuitive, correcting existing ones is significantly more 
difficult (Schumacher & Czerwinski, 1992). The problem is 
that people feel comfortable with the mental model they 
already have, despite its potential flaws. Solving a 
programming problem successfully with a faulty mental 
model may reinforce a novice's belief in its correctness. 
Therefore, it is necessary to provide a correct model of the 
machine as soon as possible.  

Visualizations of the notional machine may assist novices 
with the construction of valid mental models (Sorva, 2013). 
They provide a concrete view of how the notional machine 
executes a program. A teacher may choose to draw 
visualizations on the blackboard or use a program 
visualization tool. Many different tools exist which support 
visualizing the execution of one or more programming 
languages.  

Another way to deal with misconceptions is to introduce 
cognitive conflict. Cognitive conflict refers to challenging 
novices' existing non-viable mental models in order to 
encourage them to recognize the errors in them and seek 
improvement (Ma, Ferguson, Roper, Ross, & Wood, 2009). 
Ma et al. (2008) proposed four stages of using cognitive 
conflict for teaching programming with program 

visualizations. Those stages include: 1) identify typical 
inappropriate models, 2) challenge existing mental models 
and push novices into cognitive conflict status, 3) assist 
novices with the construction of viable models, and 4) allow 
novices to solve programming problems on their own.  

 Visual programming languages may also be useful to 
alleviate some of the difficulties when learning about the 
notional machine. Their graphical representations have a 
much simpler syntax and provide a clearer view of a program's 
structure. Additionally, some visual languages have a stage 
which is used to visualize the execution of a subset of 
instructions, like Scratch for example (Maloney, Resnick, 
Rusk, Silverman, & Eastmond, 2010).  

III. VISUALIZATIONS 

Visualization refers to the use of graphical elements to 
represent information and other phenomena (Čuvić, Maras, & 
Mladenović, 2017; Hidalgo-Céspedes et al., 2016). They are 
often used to facilitate the formation of mental representations 
of complex and abstract phenomena (Sorva, Karavirta, et al., 
2013). Some applications include data, knowledge, and 
educational visualization. A visualization that is used to 
represent some aspects of software is called a software 
visualization (SV).  

Several taxonomies for SVs have been proposed (E. 
Lahtinen & Ahoniemi, 2005; Maletic, Marcus, & Collard, 
2002; Myers, 1990; Naps et al., 2002; Price, Baecker, & 
Small, 1993; Roman & Cox, 1993; Sorva, Karavirta, et al., 
2013; Stasko & Patterson, 1992). Some of them focus on SVs 
in general, while others focus on those used to teach 
programming. For example, the taxonomy introduced by 
Maletic, Marcus, & Collard (2002) uses five dimensions to 
describe SVs based on their support for software development 
and maintenance. Price, Baecker, & Small (1993) a taxonomy 
that consists of categories and subcategories organized into a 
multi-level n-array tree. Their taxonomy is extensive and 
designed to be extendable. Lahtinen & Ahoniemi (2005) 
introduced a taxonomy for introductory programming course 
visualizations based on their support for different levels of 
Bloom's taxonomy. Naps et al. (2002) introduced a taxonomy 
for educational visualizations based on their supported level 
of engagement.  

In this paper, we adopt the classification introduced by 
Price et al. (1993) and adopted by Sorva (2013). The field of 
software visualization contains two broad subfields: algorithm 
visualization (AV) and program visualization (PV). 
Algorithm visualization tools represent algorithms at a high 
level of abstraction. They are often independent of the 
programming language and targeted towards advanced 
programming courses. Program visualization tools visualize 
concrete programs on a lower level of abstraction. They often 
target novice programmers. The adopted classification 
recognizes two subfields of PVs: visualizations of static code 
and runtime visualizations. We focus on PVs that visualize the 
execution of programs by the notional machine.  

Included into this categorization is visual programming. 
Visual languages enable the specification of programs using 
visual techniques (Price et al., 1993; Sorva, Karavirta, et al., 
2013). They can be used to specify code and represent runtime 
dynamics. Therefore, they are included as a subfield of both 
static code visualization and runtime dynamics visualization. 
For example, it is possible to specify code in Blockly and 
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visualize which instruction is executed (“Blockly,” n.d.). We 
will refer to executable visual languages as visual 
programming languages (VPL). When adopting the 
classification introduced by Price et al. (1993), Sorva (2013) 
also added visual programming simulations (VPS). VPS is a 
subtype of runtime dynamics visualizations. It allows the user 
to manipulate graphics in order to simulate the execution of a 
program by the machine (Sorva & Sirkia, 2010).  

For completeness we mention the SV classification used 
by Hidalgo-Céspedes et al. (2016) in their literature review on 
PVs. They classify SVs into three main types based on the 
representation's level of detail: code visualization, algorithm 
visualization and program visualization. Therefore, code 
visualization is considered one of the main fields, rather than 
a subfield of PVs. Additionally, they report that the target 
audience for code visualizations are professional developers, 
while PVs target novice programmers.  

In this paper, we are interested in those PVs that visualize 
the execution of a program by the notional machine. Going 
forward, when talking about program visualizations we refer 
to program visualization tools that visualize the execution of 
the notional machine. 

IV. ENGAGEMENT TAXONOMIES 

The components of a visualization and its level of 
abstraction determine what is possible to learn from it (Sorva, 
Karavirta, et al., 2013). They also influence its applicability 
for learning different content. However, passively viewing a 
visualization may not produce the expected impact on 
learning. Instead, learners must actively engage with the 
visualization to benefit from it (Ben-Ari, 1998).  

Hundhausen et al. (2002) conducted a meta-study of AV 
effectiveness. They noticed that 71% of studies that included 
active engagement of learners reported significant results. In 
contrast, only 33% of studies that did not actively engage 
learners reported significant results. The authors concluded 
that the way learners engage with the visualization has a more 
significant impact on learning than its visual representation. 
These findings motivated the introduction of engagement 
taxonomies for software visualizations.  

Naps et al. (2002) introduced the first SV engagement 
taxonomy with a focus on AVs. For consistency with Sorva's 
literature review, we refer to this taxonomy as the original 
engagement taxonomy (OET). The OET introduced six levels 
of engagement: no viewing, viewing, responding, changing, 
constructing, and presenting. The levels represent increasingly 
engaging forms of interaction. They do not form strict 
hierarchies and overlap between levels above viewing is 
possible (Naps et al., 2002). The introduction of OET 
motivated further research focused on comparing the 
effectiveness of different engagement levels (see, e.g., 
Urquiza-Fuentes & Velázquez-Iturbide [2013], Banerjee et al. 
[2013; 2015]). The general consensus is that a higher level of 
engagement will have a more significant impact on learning.  

 Algorithm and program visualizations do not always 
support the same kind of user interactions. Because the OET 
was based on AVs, it does not include some forms of 
engagement typical of PVs. Myller et al. (2009) noticed this 
and introduced the extended engagement taxonomy (EET). 
The EET includes additional levels: controlled viewing, 
entering input, modifying and reviewing. 

Sorva et al. (2013) found certain shortcomings with the 
levels of OET and EET. They addressed these shortcomings 
by introducing a two-dimensional taxonomy (2DET). The first 
dimension is the direct engagement dimension. They argue 
that OET's constructing level contains two types of activities 
that do not pose an equally challenging cognitive task. These 
two types of activities are separated in the 2DET into creating 
and applying. In this paper, we refer to those two activities as 
constructing a and b when talking about the OET.  
Furthermore, the presenting and reviewing levels of EET refer 
to equally challenging tasks. These are combined in the 2DET 
to presenting.  

The other dimension of 2DET is the content ownership 
dimension, which considers the relationship between the 
learner and content that is visualized. Two level of the EET 
also consider this relationship – entering input and modifying. 
Sorva et al. (2013) believe that this relationship influences the 
capability of learners to map the content to its visualization 
and their motivation to engage with the visualization. Table 1 
contains all of the levels of the three engagement taxonomies. 

 Despite the newer taxonomies that are proposed, it seems 
that OET is still predominantly used when comparing the 
effectiveness of different engagement levels. There may be a 
few reasons for this. One may be that most studies do not 
compare engagement levels above responding, or even 
viewing. Since the taxonomies greatly coincide on these lower 
levels, there is no need to use a finer grained taxonomy. 
Another reason may be that the OET has more abstract levels, 
which leads to more activities being included in a single level. 
This may be a consequence of drawing inspiration from AV 
research. EET's categorization system is somewhat dubious in 
its details (see Sorva 2013). Educational research usually takes 
certain time, which may mean that researchers simply did not 
have a chance to use the 2DET.  

 Whatever the reason, we categorize the visualization tools 
and the reviewed evaluations with regard to the 2DET. 
Because most research on comparing the effectiveness of 
different engagement levels is based on the OET, we provide 
a table which sums up the relationship between the direct 
engagement dimension of the 2DET to other engagement 
taxonomies (Table 2). The table also provides explanations of 
why we believe these relationships hold.  

TABLE 1 ENGAGEMENT TAXONOMIES 

# OET levels EET levels 

2DET 

Direct 

engagement 

levels 

Content 

ownership 

levels 

1 No viewing No viewing No viewing Given 

content 

2 Viewing Viewing Viewing Own cases 

3 Responding Controlled 
viewing 

Controlled 
viewing 

Modified 
content 

4 Changing Entering input Responding Own 

content 

5 Constructing Responding Applying  

6 Presenting Changing Presenting  

7  Modifying Constructing  

8  Constructing   

9  Reviewing   

10  Presenting   
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TABLE 2 RELATIONSIHP BETWEEN LEVELS OF DIFFERENT ENGAGEMENT TAXONOMIES 

 2DET OET EET Description Reason 

D
ir

ec
t 

e
n

g
a
g

em
e
n

t 
d

im
e
n

si
o

n
 

No viewing No viewing No viewing No visualization is used Intuitive 

Viewing Viewing Viewing The learner views the visualization with little 

or no interaction 

Intuitive 

Controlled 
viewing 

Viewing Controlled 
viewing 

Besides just viewing the visualization, the 
learner can step through the execution, 

control the visualization speed and inspect its 
components. 

OET's viewing level corresponds better to 
controlled viewing since less cognitive 

effort is required than for responding. 

Responding Responding, 

changing* 

Responding, 

entering input*, 

modifying* 

The learner responds to questions about the 

visualized content. Can occur during or after 

the visualization finishes. 

Responding levels are intuitive. But the 

entering input level can be considered 

equivalent if a student is asked a question 
to enter input that will result with some 

behavior of the program - similar 

reasoning as for changing in OET, 
described by Naps. 

Applying Constructing (a) Changing The learner modifies the visualization to 

perform a task. An example is manipulation 
of visualization components. 

The first constructing activity described by 

Naps et al. (2002) can take the form of 
manipulating the visualization to simulate 

the execution of an algorithm. 

EET specifies changing as manipulating 

visualization elements.  

Presenting Presenting Presenting, 

reviewing 

The learner presents a detailed analysis or 

description of the visualization, potentially to 

an audience. 

Sorva (2013) argues that the EET uses two 

categories of equally challenging tasks and 

these may be combined in a single 
category. 

Constructing Constructing (b), 

presenting* 

Constructing The learner creates his own visualizations of 

the target software. 

The OET's constructing level describes an 

activity that requires users to construct 
their own visualizations. For the presenting 

level, it is equivalent if the learner creates 

his own visualization. 

* conditional equivalence

We note that it is difficult to relate the content ownership 
dimension to some of the levels in the OET and EET. 
However, the EET does include entering input and modifying 
levels. These two levels would correspond to the own cases 
and modified content levels in the content ownership 
dimension respectively. Hence, it would make no sense to 
relate them to the direct engagement dimension, which is why 
they are not included in Table 2.  

V. PREVIOUS PROGRAM VISUALIZATION REVIEWS 

A comprehensive literature review on program 
visualizations was conducted by Sorva et al. (2013). Their 
review focuses on generic program visualizations of runtime 
dynamics whose aim is to assist in learning and teaching. The 
authors provide a brief summary of each tool as well as the 
studies and results obtained from those studies of each tool. 
Their review also includes information about the notional 
machine elements each visualization supports, evaluation 
method, and supported programming paradigm. The review 
covers a period from the 1980s to 2013 and identifies 46 
different visualization tools.  

 Hidalgo-Céspedes et al. (2016) wrote a review to update 
the program visualization list with tools that emerged from 
2013 to 2016. Their review includes only active visualization 
tools. However, they did not provide a summary of the studies 
carried out with the tools or a comprehensive discussion on 
their evaluation and supported notional machine elements. 
They also did not discuss the engagement levels with regard 
to the 2DET. Rather, the authors evaluated each tool based on 
a set of constructivist principles.  

Therefore, we base our review on that done by Sorva et al. 
(2013) since it is more comprehensive. We include the tools 
reported by Hidalgo-Céspedes et al. (2016). 

VI. SCOPE OF PROGRAM VISUALIZATION REVIEW 

We use a systematic literature review approach to provide 
an updated list of program visualization tools with regard to 
the elements of the notional machine they support, evaluation 
method and the 2DET. The review method is based on those 
used in reviews carried out by Al-Sakkaf, Omar, & Ahmad 
(2019) and Berney & Bétrancourt (2016). It inclues a 
description of the search query and databeses searched, 
eligibility criteria and overview of the selection process. 

Our review includes generic program visualization tools 
that represent the execution of a program by the notional 
machine, with the intent of providing a learning aid for  
novices and teaching aid for teachers in introductory 
programming. With regard to the classification provided by 
Maletic et al. (2002) (discussed in section III), this defines the 
task, target, and audince of the PVs. We do not pose any 
restrictions on the representation, but the medium has to be an 
electronic device and the visualization available onscreen 
(Sorva, Karavirta, et al., 2013).  

The search string contains varying terms that refer to PVs. 
For instance, sometimes the term "animation" is used instead 
of "visualization". Additionally, the term SV was sometimes 
used in the past to refer to PVs. We also limited the search to 
include only those visualizations that are intended for 
education. Our final search string was: 

 ("software animation" OR "program animation" OR 

"software visualisation" OR "program visualisation" OR 

"software visualization" OR "software visualization" OR 

"visual debugger") AND (educ* OR teach* OR learn*) 

The search covered papers that were published between 
2013 and July 2019. We searched the following databases: (1) 
Web of Knowledge, (2) ACM Digital Library, (3) Scopus, and 
(4) IEEE Xplore. Results of each database were downloaded 
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and imported into an excel spreadsheet. All papers were 
subject to the inclusion/exclusion criteria presented in Table 
3. The selection process was done in three stages. First, some 
of the papers were excluded based on their title and type. For 
instance, we excluded posters, papers records that had only 
abstract, and panels. Secondly, the abstract of the remaining 
papers was read and assessed for eligilibility. In some cases, 
the conclusion was also read and assessed. Finally, the papers 
were assessed based on screening their full text. We excluded 
papers that presented inactive PV systems that were alrady 
reported in other literature reviews, e.g. Evizor (Moons & De 
Backer, 2013). The remaining papers are included.  

Additionally, our review includes papers that were 
identified through scanning the references and citations of 
eligible papers, and other sources. However, we kept the 
criteria that the paper is published on or after 2013. We refer 
to the source of these papers as Other. Fig. 1 depicts the search 
process.  

The goal of this review is to provide an updated list of PV 
tools. A PV tool is included in our list if it is active, available 
or has not been included in previous literature reviews. We 
consider a PV tool active if there is evidence that the tool is 
still being actively developed, maintained or used to publish 
new research. Other PV tools are not discussed in this review.  

Several active PV systems have been used for research 
well before the publication range set up in this paper. To 
provide a complete picture of how the systems were evaluated, 
we include these papers in our discussion. Most of these have 
also been included in previous literature reviews.  

In the next section, we will describe new program 
visualization tools that have appeared in our search. We will 
also discuss their evaluations and results.  

VII. PROGRAM VISUALIZATIN SYSTEMS 

In this section, we will provide a description of each PV 
system and its capabilities. To better structure our review, we 
distinguish two types of research papers: 1) system 
development, and 2) evaluation. System development papers 
are those that refer to the PV system itself, the addition of new 
features to it, or development of other systems that extend its  

TABLE 3 INCLUSION AND EXCLUSION CRITERIA 

capabilities in purposeful new ways beyond visualization. 
Evaluation refers to those papers that have evaluated the 
visualization aspect provided by a PV system. Therefore, we 
will first discuss each PV system and papers related to 
development. Afterwards, we review the research related to 
their evaluation. Some papers may belong to both types of 
papers.  

A summary of the tools is presented in tables X and Y. The 
tables include information relevant for teachers and 
researchers.  

It is worth noting that a literature review on student 
engagement with SVs was recently published. The review 
extracts different theoretical foundations for developing SVs 
and proposes several design principles for future SVs. The 
review covers the period from 2011 to 2017. However, it does 
not provide a review of the results of comparing the 
effectivneses of different engagement levels.  

The rest of this section is divided into the following 
subsections:  

A. Legend for tables. 

B. Controlled viewing of given content 

C. Controlled viewing of own cases 

D. Animating own content with no control 

E. Controlled viewing of own or modified content 

F. Own content with controlled viewing and 

responding 

G. Applying or creating visualizations of own content 

H. Models for program visualization 

I. Evaluation of systems 

A. Legend for tables 

In this section we will describe the legend for Table 4 and 
Table 5. Table 4 contains general information about the PV 
systems. Table 5 contains more specific information about the 
visualization components, engagement level and how the 
system was evaluated after 2013. The tables are based on those 

 

Fig. 1 Paper selection process 

Figure 1 Paper selection process 

Paper selection process 

Insertion criteria Exclusion criteria 

Paper presents a new generic 
PV  tool as discussed in this review 

Paper presents a specialized or 
already reported inactive PV tool  

Paper presents an extension of an 

existing PV tool 

Paper presents a PV tool for a non 

general purpose language 

Paper evaluates the use of a 
generic PV tool 

Paper presents a new SV or PV 
with a focus on non-introductory 

programming or industry 

Paper introduces a new taxonomy 

for PVs 

Paper refers to algorithm 

visualization 

Paper presents a visual debugger 

that is similar to PV tools 

discussed in this review 

Paper refers to PV tools for static 

code analysis 

Paper is a literature review on PV Paper refers to other educational 
tools that are not PVs as discussed 

in this paper 

  Paper presents a tool that uses an 
existing PV system 

  Paper is not a full paper, i.e. poster, 

panel, abstract only 

  Paper refers to other tools or 

techniques for making 

visualizations, e.g. libraries 

  Paper uses existing PV tool to 

propose new methodology 

  Full proceedings as they occur as a 

record in some database searches 

  Paper is not in english 
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provided in the previous two literature reviews (Hidalgo-
Céspedes et al., 2016; Sorva, Karavirta, et al., 2013). 

1) Legend for table 4 
System name is the name of the system. In cases where the 

system is not named, the authors name is provided. Supported 
programming language and programming paradigm contain 
the information about the programming language and 
paradigm that the systems support. Programming paradigms 
are imp for imperative, OO for Object-oriented and func for 
functional.  

The installation column contains information on how to 
install the visualization. Web based visualizations do not 
require installation. Systems can have a standalone installation 
or as a plugin for NetBeans or Eclipse. Platform mentions on 
which platforms the PV system can be installed. If a system is 
web based, then the value for platform is web. Most systems 
can be installed on all of the major platforms: Linux (L), Mac 
(M) and Windows (W).  

Most of the PV systems can be obtained via the web. If a 
PV system can be obtained this way, the column available 
contains the link to the download site. Otherwise, the system 
is unavailable or can be obtained in some other way, which is 
mentioned in the table. Status refers to our best guess whether 
the system is active or inactive. At least since contains the year 
in which the system seems to have first appeared, either in 
literature or when the first version was released (Sorva, 
Karavirta, et al., 2013).  

2) Legend for table 5 
The Notional machine elements column contains a list of 

some of the key notional machine elements that the system 
can visually represent. Vars indicates the visualization of 
variables, Refs the visualization of references and/or pointers, 
Addrs memory addresses, and Objs stands for objects. Classes 
means that the system can visualize classes as part of the 
runtime, and not just as part of static class diagrams. Struct 
refers to any composite data such as arrays, lists, records, etc. 
Control refers to the visualization of the active part of the 
program at each stage of execution. ExprEv indicates that the 
system can visualize the process of expression evaluation 
(Sorva, Karavirta, et al., 2013).  

Content ownership and direct engagement dimensions 
indicate the position of a system on the 2DET. For the content 
ownership dimension, only the highest level is listed since 
systems supporting own content implies that the system can 
also support modified content and others. Given content is 
listed only if the system provides a distinct mode for example 
given content. For direct engagement, the viewing level is not 
explicitly mentioned unless it is the only level supported 
(Sorva, Karavirta, et al., 2013).  

Step grain indicates the granularity of what gets executed 
and visualized at each step. Only the lowest level is listed in 
the table. Statement (S) indicates that at each step, an entire 
statement or declaration is executed. Expression (E) indicates 
that the system supports visualizing expression evaluation in 
detail. Message passing (MP) refers to object interactions and 
communication between different entities.  

Evaluation (≥  2013) indicates the ways in which the 
visualization provided by a PV system was evaluated. Some 
studies did not specify that students were novice 
programmers, and some explicitly mention that participants 
were students enrolled in non-introductory programming 

courses. However, we included them if they evaluated the 
visualization aspect of a PV system and are relevant for the 
discussion of included PV systems. We include only 
evaluations published in articles on or after 2013. 
Experimental, qualitative and survey evaluations are included. 
We describe each of these types of evaluations in section I 
(Evaluations). We did not find any anecdotal evaluations 
during our literature search.  

B. Controlled viewing of given content 

Systems in this category allow users to control the 
execution of the visualization of given content. These systems 
require teachers to prepare the examples in advance and 
learners have no control over the visualized content. Only one 
new PV system is placed in this category: EDPVE.  

EDPVE stands for Example-based dynamic program 
visualization. The system supports the visualization of 
predefined program examples written in Pascal. It shows the 
state of all variables in the program, as well as a flowchart 
view of the code. Learners can execute the program line-by-
line, with the current line highlighted both in code and 
flowchart windows. The system also provides information on 
the line currently being executed. Learners can interact the 
visualization only by providing input and viewing output of 
the example program. The system is a research prototype 
developed for the purpose of conducting a research study 
(Tekdal, 2013). To the best of our knowledge, the PV is not 
active.  

C. Controlled viewing with own cases 

The systems discussed in this section allow the user to 
control the execution of the visualization and provide their 
own input. We have not recognized new systems that fall into 
this class. Hence, all systems reviewed were still considered 
active in previous literature reviews. 

PlanAni is a PV system that supports visualizing the 
execution of short programs (Sorva, Karavirta, et al., 2013). 
The system visualizes variables and operations with them 
based on the variables' roles. Roles are a cognitive concept 
derived from the way variables are used. In his study of roles, 
Sajaniemi (2002) found that 99% of variables found in novice-
level procedural programs can be classified into nine roles. 
For each role, PlanAni uses a specific metaphor for 
visualization. For example, a stone is used to visualize a 
constant, while a temporary variable is visualized with a 
"flashlight that is on as long as the value is used", a stepper is 
visualized with footsteps (Jorma Sajaniemi & Kuittinen, 
2003). 

The visualization metaphors introduced by PlanAni were 
later extended to include OO concepts (Jorma Sajaniemi, 
Byckling, & Gerdt, 2007). These include metaphors for 
classes, objects, object references, method invocation, 
parameter passing, return value and garbage collection. The 
metaphor-based OO animator is a collection of Flash 
animations of predefined examples (Jorma Sajaniemi, 
Byckling, & Gerdt, 2006). The learner is able to provide his 
own cases (Sorva, Karavirta, et al., 2013).  

Both PlanAni and the metaphor-based OO animations 
seem to be inactive. Their web sites have not been updated in 
over eight years. Although a paper which evaluated the use of 
PlanAni was published relatively recently, when considering 
other factors, we are unsure if the system should be considered 
the system active. 
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TABLE 4 PV SYSTEMS GENERAL INFORMATION 

# System name  

(or author) 

Supported 

languages 

Prog. 

paradigm 

Installation Platform Available Status At least 

since 

1 Grasph/ 

jGrasp 

Java, C, C++, 

Objective-C, Ada, 

VHDL  

imp, OO standalone, 

eclipse plugin 

M, L, W https://www.jgrasp.org/ active 1996 

2 Jeliot 2000/Jeliot 
3 

Java imp, OO standalone M, L, W http://cs.joensuu.fi/jeliot/ active 2003 

3 JIVE Java imp, OO eclipse plugin M, L, W https://cse.buffalo.edu/jive/ active 2002 

4 Metaphor-based  

OO Visualizer 

Java OO flash or swf 

player required 

Web, M, L, 

W 

http://saja.kapsi.fi/oo_metaphors/ inactive 2007 

5 Online Python  
Tutor (OPT) 

Python, C/C++, 
JavaScript, Ruby, 

Typescript, Java 

imp, OO not required Web http://pythontutor.com/ active 2010 

6 PlanAni Pascal, Java, C, 
Python 

imp standalone M, L, W http://www.cs.uef.fi/~saja/var_rol
es/planani/index.html 

inactive? 2002 

7 The Teaching 

Machine 

C++, Java imp, OO not required Web http://www.theteachingmachine.o

rg/ 

inactive 2000 

8 UUhistle Python imp, OO standalone M, L, W http://www.uuhistle.org/index.ph

p 

inactive 2009 

9 Ville various imp not required,  Web https://ville.utu.fi/ active 2005 

10 VIP C++ imp standalone M, L, W http://www.cs.tut.fi/~vip/en/ active 2005 

11 WinHIPE Hope func standalone M, L, W http://www.lite.etsii.urjc.es/tools/

winhipe/ 

active 1998 

12 BlueJ Novis Java imp, OO BlueJ M, L, W https://www.bluej.org/ active? 2013 

13 FM /TM 

Visualization 

Language 

independent 

imp not software Not 

software 

Not software active 2014 

14 JavelinaCode/ 

JaguarCode 

Java imp, OO not required Web http://www.jaguarcode.org/ active 2015 

15 Jeliot ConAn Java imp, OO standalone M, L, W http://cs.joensuu.fi/jeliot/ active 2013 

16 PROVIT C imp not required web http://cleast.u-

aizu.ac.jp/introduction-0/index-

introduction.html 

active 2014 

17 SeeC C imp standalone M, L, W https://seec-team.github.io/seec/ inactive? 2013 

18 Virtual-C C imp standalone M, L, W https://sites.google.com/site/virtu

alcide/ 

active 2014 

19 EDPVE Pascal imp standalone unknown unavailable inactive 2012 

20 JAD Java imp, OO integrated into 
Jload 

web unavailable active 2017 

21 LISN Java, language-

independent 

imp standalone unknown unavailable inactive? 2018 

22 ObjectVisualizer Java OO standalone unknown unavailable active? 2017 

23 Omnicode Python imp not required Web unavailable inactive 2017 

24 PandionJ Java imp, OO pre-installed 

with Eclipse,  

Eclipse plugin 

M, L, W http://pandionj.iscte-

iul.pt/installation.html 

active 2017 

25 PITON/DS-

PITON 

Python imp, OO standalone M, L, W ask via email active 2018 

26 PVC C imp not required Web https://ryoskate.jp/PlayVisualizer

C.js/ 

active 2017 

27 SunLab Java, pseudo 
language 

imp standalone Android unavailable active? 2018 

28 TEDViT C, C++ imp standalone unknown unavailable active 2015 

29 Thonny IDE Python imp, OO standalone M, L, W https://thonny.org/ active 2015 

30 (Nagae, Koji) C imp not required Web on request inactive 2013 

 included in 2013 review   included in 2016 review  new systems
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TABLE 5 VISUALIZATION AND EVALUATION SPECIFIC DETAILS OF PV SYSTEMS 

# System name (or 

author) 

Notional machine elements Content ownership 

dimension 

Direct engagement 

dimension 

Evaluation  

(≥ 2013) 

Step 

grain 

1 Grasph/jGrasp Control, Vars, Calls, Refs, Objs, 

Structs 

own content ctrl'd viewing S S 

2 Jeliot 2000/Jeliot 3 Control, Vars, ExprEv, Calls, Refs, 

Objs, Classes, Structs  

own content ctrl'd viewing 

[responding] 

- E 

3 JIVE Control, Vars, Refs, Objs, Classes, 

Calls, Structs  

own content ctrl'd viewing - S 

4 Metaphor-based OO 

Visualizer 

Control, Vars, ExprEv, Refs, Objs, 

Classes, Calls, Structs 

own cases ctrl'd viewing - E 

5 Online Python Tutor 
(OPT) 

Control, Vars, Objs, Classes, Refs, 
Calls, Structs 

own content ctrl'd viewing E, S S 

6 PlanAni Control, Vars, ExprEv, Structs own cases ctrl'd viewing E, S E 

7 The Teaching Machine Control, Vars, ExprEv, Calls, Addrs, 

Refs, Objs, Structs 

own content ctrl'd viewing - E 

8 UUhistle Control, Vars, ExprEv, Calls, Refs, 

Objs, Classes, Structs  

own content ctrl'd viewing,  

responding,  
applying 

Q E 

9 Ville Control, Vars, Calls, Structs own content ctrl'd viewing,  

responding,  

applying 

S S 

10 VIP Control, Vars, ExprEv, Calls, Refs, 

Structs 

own content ctrl'd viewing Q S 

11 WinHIPE Control, Vars, ExprEv, Refs, Calls, 
Structs 

given content, 
own content 

ctrl'd viewing,  
applying 

E, S E 

12 BlueJ Novis Control, Vars, Calls, Refs, Objs, 
Classes, Structs 

own content ctrl'd viewing - S 

13 FM/TM Visualization Conceptual spheres [Control, Vars, 

Calls] 

given content viewing E [E] 

14 JavelinaCode/JaguarCode Control, Vars, Objs, Classes, Refs, 

Calls, Structs 

own content ctrl'd viewing E, S S 

15 Jeliot ConAn Control, Vars, ExprEv, Calls, Refs, 

Objs, Classes, Structs  

own content responding E, S E 

16 PROVIT Control, Vars, Calls, Structs own content ctrl'd viewing S S 

17 SeeC Control, Vars, ExprEv, Calls, Refs, 

Structs 

own content ctrl'd viewing - S 

18 Virtual-C Control, Vars, Refs, Addrs, Structs own content ctrl'd viewing, 
responding 

S S 

19 EDPVE Control, Vars given content ctrl'd viewing E S 

20 JAD Control, Vars, Refs, Objs, Structs own content ctrl'd viewing E, S S 

21 LISN Control, Vars own content ctrl'd viewing E S 

22 ObjectVisualizer Control, Calls, Refs, Objs own content viewing E MP 

23 Omnicode Control, Vars, [Objs, Classes, Refs, 
Calls, Structs] 

own content ctrl'd viewing Q S 

24 PandionJ Control, Vars, Objs, Classes, Refs, 
Calls, Structs 

own content ctrl'd viewing E S 

25 PITON/DS-PITON Control, Vars, Refs, Calls, Structs own content ctrl'd viewing E, S S 

26 PVC Control, Vars, Refs, Calls, Addrs, 

Structs  

own content ctrl'd viewing E, S S 

27 SunLab Control, Vars, Calls own content ctrl'd viewing S E 

28 TEDViT Control, Vars, Refs, Calls, Addrs, 

Structs  

modified content,  

[own content] 

ctrl'd viewing E, S S 

29 Thonny IDE Control, Vars, ExprEv, Calls, Addrs 
Refs, Objs, Classes, Structs  

own content ctrl'd viewing S E 

30 (Nagae, Koji) Control, Vars, Calls own content ctrl'd viewing - S 

 included in 2013 review   included in 2016 review  new systems



 9 

D. Animating own content with no control 

The systems in this category allow learners to animate 
their own programs. However, no interaction with the 
visualization or its execution is supported. We found one new 
system that fits in this category: ObjectVisualizer. 

ObjectVisualizer is a system that visualizes the execution 
of a program by transforming its source code (Shin, 2018). 
The system visualizes the interaction and relationships 
between objects in a Java program. It seems to support the 
visualization of learners' own content based on the 
implementation details provided. However, it does not seem 
to provide any engagement above viewing. The visualization 
is provided simultaneously as the program is executing. The 
system may still be in active development. 

E. Controlled viewing of own or modified content 

Systems in this category allow the user to visualize their 
own programs and control their execution with stepping 
and/or play commands. Actually, most PV systems support 
these levels of the 2DET. Because there are many such 
systems, we group them based on their support for different 
programming languages: 1) PV systems for C/C++, 2) PV 
systems for Java, 3) PV systems for Python, and 4) multi-
language PV systems. 

1) PV systems for C/C++ 
PROVIT is a PV system for visualizing C programs (Yu 

Yan, Hiroto, Kohei, Shota, & He, 2014). It can visualize 
variable values and function calls. Variables are represented 
with a box that includes its data type, name and value. A 
variable's visualization is highlighted in blue if the next 
statement refers to that variable, and in red if the next 
statement will change its value. During execution, lines of 
code that are already executed are underlined in blue, and the 
next statement is underlined with red. PROVIT was initially 
developed as a desktop application, with a web version created 
later (Y. Yan, Nakano, Hara, Kazuma, & He, 2016). The 
visualizations provided by the web version can be embedded 
into a PowerPoint presentation.  

PROVIT-CI is an extension of PROVIT for instructors 
(YAN, HARA, KAZUMA, HISADA, & HE, 2018). It 
provides some functionalities convenient for the classroom, 
such as generating a PROVIT URL for a given example. The 
user just needs to upload the example source code and input 
data. PROVIT-CI also extends PROVIT by providing a new 
array viewer and visualization of return values.  

PlayVisualizerC (PVC) is a web-based PV system for the 
C programming language. It executes programs at the 
instruction level and highlights the current line in program 
execution and provides visualizations for variables and stack 
frames. PVC supports detailed visualization of dynamically 
allocated memory, file and standard I/O (Ishizue, Sakamoto, 
Washizaki, & Fukazawa, 2018).  

SeeC is a PV system for the C programming language built 
upon the Clang project (“Clang C Language Family Frontend 
for LLVM,” n.d.; Egan & McDonald, 2014). It visualizes 
program execution as a graph, which contains a node for each 
active function call. Two types of arrows are used, a blue 
dashed arrow to connect the calling function with the called 
function, and a black arrow for pointers. A node contains the 
name of the function and variable values.  

The system can automatically generate explanations that 
are linked to relevant pieces of code (Egan & McDonald, 
2014). When a user's mouse cursor hovers over part of the 
explanation, the system highlights the corresponding piece of 
code. The explanations may also reference external materials 
via URL. 

SeeC's dynamic evaluation tree visualizes the execution of 
a statement at the expression level (Egan & McDonald, 2015). 
The statement is visualized at the top of the tree, with 
evaluation steps lower in the tree, and the final result at the 
bottom. The values that are produced by an evaluation step are 
placed directly below the expressions that produced them. The 
system also checks for errors typically made by students 
before an instruction is executed (Egan & McDonald, 2013). 

SeeC also allows a rich set of ways to move through the 
visualization. Users can choose to move to a point before or 
after a value in memory changes, and to the beginning or end 
of a function call, to name a few (“SeeC,” n.d.). 

TEDViT was initially developed for teaching algorithms, 
such as sorting (Yamashita et al., 2015). However, the visual 
representations it provides place it in scope of this review. 
TEDViT's visualization interface can be divided into two 
parts. In one part, the memory state of all variables is shown. 
The authors refer to the second one as "target domain world". 
The system allows teachers to configure how certain 
components visualized in the target domain world should be 
represented. For example, teachers can define whether arrays 
should be visualized horizontally or vertically. The 
configuration can be specified via set of rules (T-Rule sets), 
which in turn can be defined through a separate GUI based 
system (Tezuka et al., 2016). In the initial version, these rules 
significantly limited learner's engagement with the visualized 
content. However, they were later changed to allow for more 
flexibility (Yamashita et al., 2018). The authors claim that 
learner's own content can be visualized. However, in their 
study they gave students source code with predefined variable 
names to match the configured rules. It is unclear how the 
target domain world behaves if the names do not match.  

The system also visualizes the flow of data between 
functions (Yamamoto et al., 2017). For recursive functions, 
learners can choose to observe it as a black box. The system 
then skips visualizing the behavior of the recursive functions. 
Learners can also choose to view the behavior of the recursive 
function for an arbitrary number of recursive calls. Once they 
wish to stop, a function call that satisfies the termination 
condition is shown.  

The authors also extended TEDViT so that it can visualize 
the states of a program at two different execution steps (Ihara 
et al., 2017), which might help learners understand how 
algorithms work by comparing the state of the program at two 
different points in time. The system can also visualize the 
execution of two different programs side-by-side. The 
rationale for this decision was to allow learners to compare 1) 
two programs with different data in order to understand 
program behavior independent of data, or 2) two different 
programs, e.g. programs with correct and incorrect behavior.  

The Teaching Machine is a web-based PV system that can 
visualize the execution of C++ and Java programs (M. P. 
Bruce-Lockhart & Norvell, 2007). The system's expression 
engine supports visualizing expression evaluation in detail 
(M. P. Bruce-Lockhart & Norvell, 2000). It also allows the 
learner to step through an expression in a single step and an 
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unlimited undo facility to step back through some part of the 
execution. The state of heap and stack memory is also 
represented. A special linked view visualizes the relationship 
between data in the stack and heap. The view is suitable for 
visualizing data structures in an advanced programming 
course (M. P. Bruce-Lockhart & Norvell, 2000). A later 
version of the teaching machine also has the ability to generate 
quizzes on algorithms at a high level of abstraction (M. Bruce-
Lockhart, Crescenzi, & Norvell, 2009; Sorva, Karavirta, et al., 
2013). This capability places the system on the responding 
level of the engagement taxonomy. However, because the 
quizzes are on algorithms, the highest engagement level 
supported for introductory programming is controlled 
viewing. The system was not used in recent publications and 
does not seem to have gotten an update in quite some time.  

VIP is a PV system that supports the visualization of a 
subset of the C++ language (Isohanni & Knobelsdorf, 2013). 
The system is based on the Clip interpreter (“CLIP,” n.d.). It 
visualizes variable values and highlights them as they change. 
Whenever the system executes an expression, it shows the 
values of operands, operators and the resulting 
subexpressions. Teachers can also prepare examples that will 
be shown during execution. 

Nagae & Kagawa (2014) introduced a prototype visual 
debugger for the C programming language. However, the 
system's interface is in Japanese. It can visualize call stacks, 
bitwise operations and variables. It allows teachers to specify 
alternative representations of visualization components. The 
system seems to be developed purely as a research prototype 
and is no longer maintained. 

2) PV systems for Java 
BlueJ Novis is an extension of the BlueJ IDE for providing 

a visualization of the notional machine (M. Berry & Kölling, 
2016; Michael Berry & Kölling, 2013, 2014). It supports the 
visualization of Java programs at different levels of detail. At 
the highest level of detail, the system visualizes all object 
fields, method call chains, and parameter and return value 
passing. Lower detail levels show objects in a simplified view 
with references to other objects and method invocations. The 
lowest detail level shows a heatmap which displays object 
activity. A step in Novis is a method call or return. However, 
it supports statement level step granularity via BlueJ 
debugger. Novis does not seem to be included in the 
downloadable version of BlueJ, therefore we are unsure if it's 
still active. We did not find any papers that evaluated BlueJ 
Novis. 

JAD is a visual debugger for Java designed to assist deaf 
and hearing-impaired (DHI) students (Nascimento et al., 
2017). Despite its focus on DHI students, it might be used in 
introductory programming courses. JAD is embedded in 
JLoad, a Java e-learning object for the deaf, which is 
embedded in a learning platform (Silva, Oliveira, Oliveira, & 
Freitas, 2014). JAD provides controlled execution and can 
visualize variables. The system also provides sign language 
explanations for error messages (Nascimento et al., 2017).  

JaguarCode, formerly known as JavelinaCode is a web-
based PV system for Java (Jeong Yang, Young Lee, & Hicks, 
2016; J. Yang, Lee, & Chang, 2017). JaguarCode provides 
both static and dynamic visualization for OO programs 
(Earwood, Jeong Yang, & Young Lee, 2016). Static 
visualization provides three sets of UML class diagrams (J. 
Yang, Lee, Hicks, & Chang, 2015). One for the active Java 

program, one compact that shows the relationship between 
classes in the project, and a detailed diagram with all project 
information. The system supports adding new files to an active 
project. JaguarCode also seems to be able to generate object 
and sequence UML diagrams (J. Yang, Lee, Gandhi, & Valli, 
2017).  

When a line of code is executed, its corresponding class in 
the UML class diagrams is highlighted. JaguarCode can 
visualize variable values, function calls, objects and their 
instance variables. Learners can step forward and backwards 
through program execution. Stepping through is at the 
statement level. The system is still under development and is 
currently available only to authorized users. Future plans for 
JaguarCode development are discussed by Yang et al. (2017). 

Jeliot 3 is the culmination of years of research that started 
with Eliot (Sorva, Karavirta, et al., 2013). It is one of the most 
well-known and researched family of PV systems. Its 
predecessors include Eliot, Jeliot I and Jeliot 2000 (Ben-Ari et 
al., 2011; Haajanen et al., 1997; S.- Lahtinen, Sutinen, Tarhio, 
& Tuovinen, 1997; Levy, Ben-Ari, & Uronen, 2003). Each 
system attempted to improve on the one before. The first 
system, Eliot, visualized variables of C programs. Jeliot was a 
proof of concept web-based visualization system that 
visualized Java programs. However, it had a GUI that was too 
complex for beginner programmers. Jeliot 2000 introduced a 
simpler interface and more complete animations.  

Jeliot 3 added the ability to visualize classes and objects 
(Moreno, Myller, Sutinen, & Ben-Ari, 2004; Sorva, Karavirta, 
et al., 2013). The visualization area is divided into four areas 
for visualization components of different type. Jeliot 3 
supports visualizing a large subset of the Java language. 
Surprisingly, as opposed to many other PV systems, Jeliot 3 
does not support stepping back through the program. The 
system visualizes control, variables, expression evaluation, 
method calls, references, objects, classes and various structs. 
mJeliot is a tool that allows learners to answer questions about 
the visualization on their mobile phones (Pears & Rogalli, 
2011). Learners also receive feedback about their response. 
mJeliot may alleviate Jeliot 3 to the responding level of the 
direct engagement dimension. 

jGrasp is a lightweight development environment that 
provides various visualizations for several programming 
languages (“JGRASP Home Page,” n.d.), including C++ and 
Java. It can visualize variables, arrays, and objects and their 
states. The system provides viewers that can display an object 
at different levels of abstraction (Hendrix, Cross, & Barowski, 
2004). Higher-level viewers are more appropriate for learning 
about data structures, such as linked lists and trees. The object 
viewer provides a lower-level view of an object's state.  

Version 2.0 of jGrasp introduced the new viewer canvases 
(Cross, Hendrix, Barowski, & Umphress, 2014). Learners can 
play the viewer canvas in order to auto-step, i.e. animate, the 
execution. The learner can choose additional details for a 
viewer, such as array indices, and host multiple viewers in a 
single canvas. For example, in case of learning how a sorting 
algorithm works, the learner can add an array viewer and a bar 
graph viewer in a single canvas, which allows multiple 
visualizations of the algorithm.  

JIVE is an interactive environment suitable for novice-
level programs and larger object-oriented and multithreaded 
programs (Sorva, Karavirta, et al., 2013). It is developed as an 
Eclipse plugin and provides multiple views of execution, 



 11 

including object and sequence diagrams (P. Gestwicki & 
Jayaraman, 2005; P. V. Gestwicki, 2004). Both of these 
diagrams can be shown in a detailed and compact view. The 
system also provides a call-path view which provides a 
compact visualization of a series of method activations. 

Recent research with JIVE has dealt with compacting the 
visualization of sequence diagrams (Jayaraman, Jayaraman, & 
Lessa, 2017) and the introduction of state diagrams (Ziarek, 
Jayaraman, Lessa, & Swaminathan, 2016). Jayaraman, 
Jayaraman, & Lessa have (2017) introduced horizontal, 
vertical and hybrid techniques for compacting sequence 
diagrams and compaction techniques of the execution of 
multi-threaded programs with different forms of interaction. 
State diagrams were introduced in order to provide a more 
concise way to visualize execution and state information 
(Ziarek et al., 2016). The system also can also check the 
consistency between a runtime and design-time provided state 
diagram. The consistency check does not test for equality. 
JIVE highlights states and transitions in the runtime state 
diagram that are not included in the design-time diagram, 
which may point to possible bugs in implementation.  

PandionJ is a visual pedagogical debugger for Java 
(Santos & Sousa, 2017). The system offers control commands 
typical for debuggers, such as step in, step out, step over, 
resume, and stop execution. It can visualize class, objects, 
variables, structs, and control (Santos, 2018). PandionJ also 
allows learners to interact with visualized objects and invoke 
their public methods. One of the goals of the system is to 
somewhat mimic the way teachers might draw visualizations 
of variables. Therefore, the system analyzes the user's code in 
order to assign certain roles to some variables.  

PandionJ offers a widget extension that allows alternative 
visualization for primitive values, arrays and objects (Santos, 
2018). To use alternative visualizations, called widgets, of 
primitive values and arrays, the user needs to annotate their 
declaration with the appropriate tag. The system can 
automatically associate an object type with a widget. 

SunLab is a PV system for Android smartphones. The 
initial version supported the visualization of Java programs 
but has since changed to a pseudo language Dynamic program 
visualization on android smartphones for novice Java 
programmers (E. Kumalija, Yi, & Fatih, 2018). It supports the 
visualization of variables, function calls and expression 
evaluation. The system can also interact with smartphone 
sensors (E. J. Kumalija, Fatih, & Sun, 2019). 

3) PV systems for Python 
CodeSkulptor is a web-based programming environment 

for Python. I was developed a massive open online course 
(MOOC). The system incorporates OPT's visualization 
capabilities. However, OPT does not seem to support event-
driven GUI programs, whereas CodeSkulptor does. Certain 
types of events may be automatically triggered numerous 
times which may be difficult to visualize. To remedy this, 
when CodeSkulptor detects events, such as draw and ticks, it 
adds buttons that will allow the user to manually trigger them 
(Tang, Rixner, & Warren, 2014),  

Omnicode is a prototype IDE built upon Online Python 
Tutor (OPT). Omnicode is live, which means that any changes 
to the code are automatically visualized. The system uses 
scatter plots to visualize the entire history values of numeric 
variables. The visualization is limited in this regard. However, 
the system does take advantage of being built upon OPT. After 

a user selects a line of code, a detailed visualization is 
provided. Users can also create their own scatterplots to 
display visualizations of other meaningful numeric values, 
e.g. length of a list (Kang & Guo, 2017). Omnicode was a 
graduate project that is not being actively developed or used. 

PITON is an IDE for Python that combines PV and 
programming workspace (Elvina, Karnalim, Ayub, & 
Wijanto, 2018). It combines features of Online Python Tutor 
(Philip J. Guo, 2013) and PyCharm (“PyCharm,” n.d.). Major 
features taken from OPT are visualization of step-by-step 
execution, variable visualization, and control highlighting. 
Minor features that enhance the usability of the system are 
also implemented, such as highlighting variables whose value 
changes and simplified errored messages, PITON also 
provides different mechanisms for providing program input. 
The classic mechanism which accepts input when the 
corresponding input instruction is executed. The second and 
third mechanisms allow the user to provide all inputs before 
the code is executed, one of which accepts inputs from a file. 
Major PyCharm features added to PITON include compile & 
run, source code highlighting and file manipulation. Programs 
in PITON may be run without invoking the visualization.  

DS-PITON is an extension of PITON which includes an 
AV tool (Nathasya, Karnalim, & Ayub, 2019). The extended 
system can visualize seven different data structures in its data 
structure display. The display can show multiple data 
structures simultaneously. The system can also show the code 
implementing the data structures and visualize the execution 
of their methods.  

Thonny is another IDE for that supports the visualization 
of Python programs. The system supports stepping into and 
over program statements. When the learner steps over a 
statement, Thonny executes the whole statement. In case the 
learner decides to step into a statement, Thonny highlights the 
first child of the statement, if there is one. Stepping into also 
enables users to evaluate expressions step-by-step. Function 
execution is visualized in its own window with its own stack 
frame. Heap values are represented with an ID, which when 
selected shows the values associated with it. The system also 
logs user activities in a file, which enables the reproduction of 
user actions and program construction (Annamaa, 2015). 

4) PV systems that support multiple languages 
Online Python Tutor (OPT) is another long-lived and 

popular PV system (Philip J. Guo, 2013). It supports the 
visualization of programs several programming languages, 
including Python and Java. OPT is a web-based system whose 
visualizations can be embedded into other web pages. It 
supports visualizations at the statement level. Over the years, 
additional systems have been built on top of or based on OPT. 
Systems that were built on top of OPT include Codepourri, 
Codechella, and OPT+Graph. Others that were based on OPT 
include TraceDiff and a system introduced by Azadmanesh 
and Hauswirth. 

Codepourri is a tool that enables users to annotate source 
code to create tutorials (Gordon & Guo, 2015). These tutorials 
are embeddable into other web pages. Annotations can be 
created at each step of the execution. Users can also see 
annotations left by others and vote on the best one.  

Codechella is a system embedded with OPT that allows 
collaborative learning (P. J. Guo, White, & Zanelatto, 2015). 
Users can start shared sessions and join via a generated URL. 
All members of a session see the same programming code and 
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visualization. These are kept synchronized, regardless of 
which member edits the code or advances the visualization. 
Members can also see each other's mouse pointers. The system 
also provides a joined chat for all session members.  

OPT+Graph is a tool based on OPT for visualizing graph 
data structures in C (Dien & Asnar, 2018). The tool supports 
bar graph, list and tree representations.  

Azadmanesh and Hauswirth (2017) introduced a system 
based on OPT that provides more information about statement 
execution and intuitive code explanations. They changed the 
backend of OPT and modified its frontend. The system 
supports visualization of Java programs. It visualizes 
expression evaluation in a tree-like structure. Their 
visualization retains the information about the order in which 
expressions are executed and shows the intermediate and final 
values of evaluation. Values presented lower in the structure 
are fetched and evaluated first, and the final result is on top. 
Each step is accompanied by a spoken explanation provided 
by a JavaScript speech Synthesizer. 

TraceDiff is a tool based on OPT that highlights the 
difference in the execution of a programs actual and expected 
behavior (Suzuki et al., 2017). A learner submits a program to 
the TraceDiff system, which identifies potential corrections 
and synthesizes a correct program. The system extracts the 
differences between the two and highlights them on the user 
interface.  

LISN is a language-independent PV system. It was 
primarily developed as a prototype to introduce and 
demonstrate an embedding technique for language-
independent PV tools. To use the system, the educator needs 
to provide the target source code and two feature sets. The first 
feature set is related to the programming language, and the 
second to the source code itself. The programming language 
feature set includes the run and compile commands, input, 
output, state, and executable file names. The source code 
feature set contains the source code, and library import, file 
writer invocation and file writer declaration instructions 
(Sulistiani & Karnalim, 2018).  

Hence, in case a programming language or source code 
change, one or both new feature sets need to be provided 
(Sulistiani & Karnalim, 2018). The system operates in three 
phases. In the first phase, the source code is embedded with 
library import instructions, file-writer declaration instructions 
and file writer-invocation instructions. The source code, 
embedded source code, run, and compile commands are then 
passed to the second phase which compiles and runs the code. 
It also generates a file containing the visualization states. The 
states file is then passed to the visualization phase that 
visualizes it. The system can visualize control and variable 
states. It is currently not being further developed. 

F. Own content with controlled viewing and responding 

The systems in this section provide the user the freedom 
to step through the execution, and possibly answer questions 
about the visualization. 

Jeliot ConAn is a version of Jeliot 3 that produces 
conflictive animations (Moreno, Sutinen, & Joy, 2014). These 
animations include incorrect visualizations of certain steps 
(Hidalgo-Céspedes et al., 2016; Moreno, Sutinen, Bednarik, 
& Myller, 2007). Their purpose is to keep the learner in a state 
of cognitive conflict for the duration of the visualization. The 

learner needs to actively think about what he sees and respond 
when he believes an incorrect visualization occurred.  

Moreno et al. (2013) proposed a game concept based on 
conflictive animations. In their proposed concept, students 
should use a PV system to create conflictive animations and 
challenge their peers to find the conflict. The students creating 
the conflictive animations will have to identify the concepts 
he had most problems with. Students should use a separate 
system for the resolution of conflicts, which would also be 
used a repository for the animations. The peers reviewing the 
animation need to find the step of the conflict and identify the 
concept that was incorrectly animated. Students would be 
awarded points if they correctly solved the conflicts. There is 
a possibility to have correct animations in which case students 
should indicate that the animation is correct. 

Virtual-C IDE is an educational development environment 
for the C programming language (D. Pawelczak & Baumann, 
2014). Variables are visualized in memory blocks with colors 
corresponding to the type of memory. Plugins for Virtual-C 
can be implemented with JavaScript. An example of a plugin 
that visualizes data structures is given by the authors (see 
Pawelczak & Baumann [2014]).  

The system provides a testing framework (TF) that enables 
teachers to create tests that evaluate users' knowledge (D. 
Pawelczak & Baumann, 2014). It also provides static and 
dynamic tests for user code (Dieter Pawelczak, Baumann, & 
Schmudde, 2015). An example of a static test is to check 
whether a function is correctly invoked. Dynamic tests include 
I/O, performance and function tests, which are predefined. 
The teacher can also write assertion and expectation tests. A 
test suite file needs to be provided for the generation of test 
cases. 

G. Applying or creating visualizations of own content 

In this section, we cover systems that support engagement 
similar to visual program simulation. The exception is 
WinHIPE, which allows learners to configure animations 
themselves. 

UUhistle is a well-known PV system for visualizing 
Python programs (Sorva & Sirkia, 2010). The system supports 
visualizing own content and provides an explanation of what 
is happening with the visualization for each step. The learner 
can step through the execution in expression or step level. It 
also provides a visual program simulation (VPS) mode of 
execution. In VPS, the learner manipulates the visualization to 
execute the program with a mouse. The learner is required to 
execute each instruction in the appropriate order and use and 
allocate program memory. The system also allows learners to 
make mistakes and gives feedback on them.  

UUhistle is currently not being actively supported or 
developed as noted on its website. We are not aware if it is 
used in teaching. Therefore, we assume it is inactive. 
Additionally, two successor systems for UUhistle, Jsvee and 
Kelmu, have been introduced (Sirkiä, 2016). Jsvee is a 
language angostic library for program visualizations. It can 
assist educators with creating visualizations of the notional 
machine. Kelmu is a toolkit for augmenting generated 
animations with additional elements, such as textual 
explanations. However, these systems are out of scope of this 
review. We refer the interested reader to Sirkiä & Sorva 
(2015), Sirkiä (2016) and Hosseini et al. (2016) for additional 
information.  
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Ville started out as a PV system with support for multiple 
programming languages, including Java and Python (Laakso, 
Kaila, & Rajala, 2018). The new version of Ville is a 
collaborative learning platform. We are only interested in its 
visualization aspect for this paper.  

In earlier versions, the teacher needed to provide examples 
which could then be modified by the user (Kaila, Rajala, 
Laakso, & Salakoski, 2008; Sorva, Karavirta, et al., 2013). 
However, a recent paper suggests that learners can write full 
programs. The teacher only needs to create the appropriate 
exercise (Laakso et al., 2018).  

Ville supports multiple types of automatically assessed 
exercises for programming and provides an interface for 
implementing new ones in Java. Users may be required to 
write programs or modify existing ones. Teachers can add 
popup questions to example programs, which will appear at 
certain steps in the visualization (Kaila et al., 2008). Students 
may be given a shuffled program, which they are required to 
re-arrange to produce a working solution. Another type of 
exercise engages students in simulating the execution of a 
program. The system provides certain components which 
students use to manually execute certain aspects of a program 
(Laakso et al., 2018; Sorva, Karavirta, et al., 2013). 

The visualization can be viewed in a step-like fashion or 
animated with adjustable speed. Ville supports the 
visualization of function calls and variables. It offers a parallel 
mode which visualizes two different programming languages 
simultaneously. Users can add support for new programming 
languages via built-in syntax editor (Kaila et al., 2008).  

WinHipe is an IDE that supports the visualization of the 
functional programming language HOPE. The IDE is based 
on term rewriting, an evaluation model of functional 
programming. In one control step, the users can evaluate the 
entire expression, perform n rewrite terms or evaluate a 
reducible expression. Users can also construct animations 
using WinHIPE. The user types in and evaluates an expression 
by using the actions he believes are most appropriate, which 
generates a set of visualizations. He then selects the 
visualizations that will be used in the animation. The 
animations can be played in WinHIPE or used to generate a 
web page along with the source code and descriptions (Pareja-
Flores, Urquiza-Fuentes, & Velázquez-Iturbide, 2007). The 
system's facility to construct program animations can also be 
used by students. Students can be given a problem and the 
solution source code, and required to provide suitable input 
data, choose the most appropriate visualization steps and write 
a description of the solution. Therefore, WinHIPE may be 
placed on the applying level of the direct engagement 
dimension (Sorva, Karavirta, et al., 2013; Urquiza-Fuentes & 
Velázquez-Iturbide, 2012). 

H. Models for program visualization 

Here we include models that were introduced for PV. 
These have not been implemented as a software system. There 
is currently only a single model that falls to this category.  

TM Visualization, previously called FM Visualization, is a 
visualization model for describing the structure of a system 
(Al-Fedaghi & Alrashed, 2014; AlFedaghi, 2019). It has not 
yet been implemented into any PV system. The model 
describes a system in terms of components and flows. 
Components are organized into conceptual spheres, which 
may intersect with or encompass other spheres. The model 

was introduced to include various software and hardware 
aspects of program execution that are most often ignored in 
PVs. Depending on the program, the visualization may 
include different conceptual spheres, e.g. arithmetic logic unit 
(ALU) if the program executes an arithmetic operation. 
Statements themselves are represented with conceptual 
spheres (Al-Fedaghi & Alrashed, 2014). The information in 
tables X and Y is based on the examples of C++ programs 
provided by Al-Fedaghi & Alrashed (2014). As opposed to 
other visualizations, TM visualization seems to show the 
entire execution process as a graph, at least for some 
programs.  

The model can be used to describe other types of systems, 
not just programs. Some examples include a half-adder, 
vending machine, and a water phase diagram (Al-Fedaghi & 
Sultan, 2017).  

If a hypothetical system were to implement TM 
visualization, we believe that its step grain would be similar 
to that of expression evaluation. Since expression evaluation 
contains subexpression that may also have subexpressions, 
this would correspond to spheres which contain other spheres. 
Higher levels of step grain may be supported as n flow/sphere 
steps, which would be similar to WinHIPE's n rewrite terms 
(Pareja-Flores et al., 2007). 

I. Evaluations 

Many of the PV systems discussed in the previous sections 
were evaluated to collect student feedback on the system or 
evaluate their effectiveness on student learning. In this 
section, we review the publications identified through our 
literature search that evaluate the effect of visualization on 
learning to program. We do not consider evaluations of other 
aspects of a PV system.  

We include experimental, qualitative, anecdotal and 
survey evaluations. Experimental evaluations may include 
quasi-experiments or experiments with quantitative data. We 
have a special interest in evaluations regarding different levels 
of engagement taxonomies. Qualitative evaluations are those 
that refer to rigorous qualitative research methods. Anecdotal 
evaluations are basically the experiences a user had when 
using the system. Surveys are studies that produced 
descriptive statistics or collected data from user feedback. We 
consider experiments that do not compute a statistical 
significance between groups as surveys.  

The section is organized into the following subsections: 

1) Experimental and survey evaluations 

2) Qualitative evaluations 

3) Survey evaluations 

 

1) Experimental and survey evaluations 
This section contains a review of the publications which 

evaluated program visualizations either via experiment or 
survey. The two types of evaluations are combined in one 
section because many experimental studies are followed-up 
on by feedback questionnaires. Keeping such studies together 
in a single section should improve readability of our paper.  

EDPVE 
EDPVE was used in an experiment to compare the 

effectiveness of static and dynamic program visualizations. A 
complementary system called example-based static program 
visualization environment (ESPVE) was used for comparison. 
The systems supported only a flowchart view, variables and 
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source code, which could not be animated. In fact, the user 
could not have any interaction with the program. Also, as 
opposed to EDPVE, the system does not provide information 
about the current instruction being executed. Both systems 
were used as support for traditional teaching methods (Tekdal, 
2013). 

The authors used a test that included the following subject 
areas: variables, control statements, loops and arrays. They 
report a statistically significant difference in favor of using 
dynamic program visualizations on the overall test. 
Additionally, they divided the test items into three subtests: 
control statements, loop statements, and array statements. For 
each subcategory, they report a statistically significant 
difference favoring dynamic program visualizations (Tekdal, 
2013).  

A delayed was used to assess student retention. The results 
of the posttest and delayed test showed no statistically 
significant difference for either group. The result indicates that 
the type of visualization does not affect retention. However, it 
is unclear whether the delayed test was the same as posttest, 
which seems to be the case. If this is correct, then there is a 
possibility that students have remembered (some of) the 
answers (Tekdal, 2013).  

It is unclear whether the level of content ownership might 
have affected the results. The authors note that the systems 
were used merely as support. However, we need to ask 
ourselves if the group using static visualization would have 
interacted more with the system if it supported own cases, or 
a higher level on the content ownership dimension. A higher 
content ownership dimension might have prompted students 
to explore the static visualization more. One might argue that 
providing own cases to a static visualization is irrelevant. 
Given that the variables were visualized in both systems, we 
believe it might lead to a higher degree of interaction.  

JAD 
JAD was used in a study to compare the effectiveness of 

its visual debugger for learning programming in a basic Java 
course. The study compared the performance of DHI and non-
DHI students to fix bugs in two Java classes. Three 
performance metrics were used: time to complete task, 
completion of all tasks, and number of times the student asked 
the instructor for help. The p-values showed no statistically 
significant difference between DHI and non-DHI students on 
all metrics. However, the study was conducted on only 10 
students (5 DHI and 5 non-DHI) (Nascimento et al., 2017). 

JAD was qualitatively evaluated by DHI and non-DHI 
students. However, we consider this a survey, since the 
theoretical framework and detailed results for the qualitative 
evaluation were not provided in the publication. In general, 
the study reports that DHI students found the tool more 
appropriate than other tools, and was intuitive, simple, and 
helped with debugging (Nascimento et al., 2017). 

JaguarCode 
JaguarCode's (formerly JavelinaCode) effectiveness 

towards helping students comprehend two given projects was 
evaluated in two controlled experiments. Both experiments 
had the same two projects, a single control group and an 
experimental group. Both experiments evaluated students' 
response times and correctness of solutions to given questions. 
The time it took to answer each question was recorded (J. 
Yang, Lee, & Chang, 2017; Jeong-sug Yang, 2016). 

In each experiment, the control group had no 
visualizations, and the experimental group used JaguarCode 
(JavelinaCode at the time). In both experiments and for both 
projects, students' in the experimental group took longer to 
answer the questions. A statistically significant difference was 
found in the harder of the two projects. Regarding the 
correctness of solutions, in all experiments and projects, the 
results favored the experimental group. Statistically 
significant difference in the first experiment was found for the 
easier project, and for both projects in the second experiment. 
The authors concluded that using JaguarCode improved 
student performance on questions regarding tracing and 
program understanding. The higher response time for the 
harder questions might be the result of students using the 
visualization to improve the accuracy of their answers. The 
experiment might be considered a comparison of different 
engagement levels: no viewing vs viewing for program 
understanding and tracing (J. Yang, Lee, & Chang, 2017). 

In addition to the experiment itself, the authors evaluated 
the system's usability and visualization with two 
questionnaires. Results of ow that students were generally 
satisfied with both static and dynamic visualizations provided 
by JaguarCode. Some participants also suggested certain 
improvements, such as multi-language support, increasing the 
execution speed and better feedback on errors (J. Yang, Lee, 
& Chang, 2017; Jeong-sug Yang, 2016).  

An experiment by Yang et al. (2017) investigated if 
JaguarCode's run-time visualization helped students to 
understand OO concepts and if generated UML diagrams 
assisted users with interpreting their program's behavior. The 
published article reports only on the feedback collected via 
questionnaire. The study reported positive feedback on the 
system's usability and visualizations. In general, most 
participants agreed that the generated UML diagrams helped 
them with program comprehension. Most of them reported 
that the class diagram helped them the most with 
understanding the program, followed by the sequence 
diagram. The participants also reported that JaguarCode is 
useful for beginners to learn java programs and the visual 
diagrams were helpful (J. Yang, Lee, Gandhi, et al., 2017). 

Codeeasy (Jeliot 3) 
Eranki & Moudgalya (2013) used Codeeasy, a tool built 

on Jeliot 3 to investigate the effect of a PV system in spoken 
tutorial workshops. The study included four groups in total. 
Two groups, one control and one experimental, learnt Java, 
and the others learnt C++. All groups watched spoken 
tutorials, while only experimental groups used the Codeeasy. 
The authors found a statistically significant difference for 
learning programming competencies in favor of PVs. Program 
comprehension and debugging skills were significantly 
improved for the experimental group. The same participants 
also demonstrated better performance concept-wise. 

Jeliot ConAn 
Moreno et al. (2014) carried out an experiment to compare 

the effectiveness of Jeliot ConAn (conflictive animations, 
experimental group) and Jeliot 3 (normal animations, control 
group). The study evaluated conflictive animations related to 
function calls.  

Results of the study showed that Jeliot ConAn had an 
impact on students, and they slightly improved their score in 
the post-test relative to the pre-test. However, no statistically 
significant difference was found between the control and 
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experimental groups. The authors believe that this might be 
due to the small number of participants (N = 18) (Moreno et 
al., 2014). Apart from evaluating conflictive animations, an 
impact on study learning may have been caused by the 
difference in engagement levels of the two systems, 
responding vs. controlled viewing.  

An additional graphical questionnaire was used to evaluate 
students understanding of animations and concepts in them. A 
correlation between the graphical questionnaire and students 
prior programming knowledge was found for both groups. In 
the graphical questionnaire, the control group obtained a 
higher average score (control group = 6.82, experimental 
group = 4.82). The authors reported that some explanations 
from the control group indicated that they had a better 
understanding of the visualized concepts than the 
experimental group (Moreno et al., 2014).  

Moreno et al. (2014) also collected student feedback about 
Jeliot ConAn and Jeliot 3. In general, twice as more students 
in the control group reported that Jeliot 3 helped them 
understand Java programs than in the experimental group. 
Both tools were not hard to use, while the control group 
wished they used the Jeliot 3 in more debugging exercises.  

ObjectVsualizer 
ObjectVsualizer was evaluated in two experiments, one of 

which focused on debugging, and the other on extending 
functionality tasks. Both experiments featured a control (no 
visualization) and experimental group (visualization). In both 
experiments, students that used the visualization obtained 
higher scores in average. However, only the first experiment 
showed statistical significance between the groups. These 
results indicate that the use of visualization might not have a 
significant impact on understanding simpler programs (Shin, 
2018). This study may also be considered as no viewing vs. 
viewing in the engagement taxonomy. 

Online Python Tutor 
Karnalim & Ayub  (2017a) carried out an experiment on 

Online Python Tutor's effectiveness in an introductory 
programming course. They included two classes in the study 
which alternately used OPT, except for the fifth (both did not 
use OPT) and sixth week (both used OPT). The study included 
both quiz and questionnaire. The results of the questionnaire 
showed that OPT is a promising PV system for learning 
introductory programming and students would like to use it 
more laboratory sessions. Quiz and questionnaire results both 
showed that OPT has a positive impact on doing basic 
programming sub-task, such as understanding program flow. 
For more advanced topics, which were also evaluated with 
quiz and questionnaire, the visualization had a positive impact 
on learning functions, while it did not have such an impact on 
arrays. 

Karnalim & Ayub (2017b) also conducted a survey to 
collect feedback on students' perspectives of OPT. The 
participants were divided into two groups that used OPT for 
14 weeks alternately, one group used it in odd weeks, and the 
other in even weeks. The feedback is generally positive. 
Students believe that OPT can help in finding errors and 
understand how their code works. However, students need 
time to adapt to using the system and slow internet connection 
may discourage its use.  

Karnalim & Ayub (2018) also carried out a quasi-
experiment to evaluate Online Python Tutor's effectiveness 
for learning data structures. The experiment was carried out in 

14 lecture weeks, with one group being the experimental 
group for odd weeks, and the other for even weeks. The 
control group for that week did not use visualizations. The 
authors carried out comparisons between intervened and non-
intervened sessions within the same group. Results showed 
statistically significant difference, for one group a positive 
correlation, and for one negative. The authors assume that this 
discrepancy occurred because OPT's UI is not intuitive. They 
assume that the group with the positive correlation had prior 
experience with OPT. Authors also compared the 
corresponding sessions of the same week between groups. 
Statistically significant difference was shown in the first week, 
which favored the control group, and the twelfth, which 
favored the intervened group. These results are probably 
related to the adaptation time required to get used to OPT's UI 
and visualization. The authors conclude that OPT might be an 
effective learning tool if the students have a chance to use it.  

Thayer, Guo, & Reinecke (2018) studied the correlation 
between the users back-stepping through the visualization and 
their cultural levels of self-centered learning. They took into 
account the Power Distance Index (PDI) and Conservation, 
which measure instructor-directed learning. A higher PDI 
indicates that a country's educational system is centered 
around the authority ("teacher-centered education"), and a 
lower that it is centered around the student ("student-centered 
education"). Conservation is a measure of how much the 
student values tradition. They carried out two studies and 
showed that OPT did not benefit students from all cultures 
equally. Their first study, that focused on country-level PDI, 
showed that students from cultures that have a lower PDI will 
take more back-steps. Their second study investigated how 
culture affects back-steps, and personal values and back-steps 
affect debugging success. The study found 1) only marginal 
negative correlation with Conservation, 2) the number of 
back-steps was negatively correlated with debugging success, 
and 3) for instructor-centered learners, many back-steps meant 
lower debugging success, and for student-centered learners 
the correlation was lower. 

PandionJ 
PandionJ was used in a course offering of 2017/2018 for 

12 weeks. The pass-rate of the course was compared to the 
pass-rate of three prior years when AguiaJ was used 
(“AguiaJ,” n.d.). The results showed statistically significant 
improvements in course pass-rate compared to each of the 
three prior years (Santos, 2018). 

PITON 
Elvina et al. (2018) evaluated PITON in two studies, one 

with lecturer assistants and one with students. Both lecturer 
assistants and students provided feedback. Feedback from the 
first study was mostly positive. Lecturer assistants believe that 
the step-by-step execution can be helpful for students, and that 
the error message descriptions are easier to understand than 
standard ones. A recognized shortcoming of PITON is that it 
does not visualize object variables.  

The second study investigated the effectiveness of PITON 
compared to PyCharm+OPT scenario. The authors concluded 
that PITON is more beneficial to use in laboratory sessions 
because it is impractical for students to switch between 
PyCharm and OPT. Additionally, this may have resulted in 
comparing PyCharm with PITON, which led to a statistically 
significant difference in favor of PyCharm+OPT for the topic 
of functions. A survey of students showed that they preferred 
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PITON over PyCharm+OPT and that its implemented features 
are helpful (Elvina et al., 2018).  

DS-PITON was evaluated with several quasi-experiments 
to measure its effectiveness for learning data structures 
compared to traditional textbook learning. Two quasi-
experiments included students that have passed the Basic 
Algorithm and Data Structures course with a grade of C or 
higher (moderate-paced students), and three quasi-
experiments included students still enrolled in the course with 
a mid-term score below C. The comparison took into account 
the score and time required to complete an assessment. Results 
of the quasi-experiments showed a statistically significant 
improvement in favor of DS-PITON for both moderate-paced 
and slow-paced students. Regarding time efficiency, a 
statistically significant improvement was observed for 
moderate-paced students. For slower-paced students, DS-
PITON did not increase time-efficiency, and in one 
experiment, it showed a statistically significant increase in 
completion time. The feedback from the survey collected 
information on potential improvements to DS-PITON and 
showed that students believe in its effectiveness for learning 
data structure materials (Nathasya et al., 2019).  

PlanAni 
PlanAni was used in an experiment to study the effect of 

visualization on understanding the roles of variables. The 
programming language taught was C. The results of 
comparing program construction between the control and 
experiment groups yielded no significant results. Hence, the 
authors compared them based on the SOLO taxonomy (Lister, 
Simon, Thompson, Whalley, & Prasad, 2006). A statistically 
significant result was obtained on the SOLO levels for 
program construction. The difference favored teaching the 
roles of variables visually (experimental group) (Shi, Min, & 
Zhang, 2017).  

A feedback survey showed that students in the 
experimental group had a higher rate of approval about the 
roles of variables. However, both groups were not satisfied 
with their ability to construct programs (Shi et al., 2017).  

PVC 
Ishizue et al. (2018) carired out an experiment in which 

they compared PVC, SeeC and no visualization. The PVC had 
the largest percentage of correct answers, with a statistically 
significant difference with regard to SeeC. The group that 
used SeeC had the lowest score. However, there is no report 
that a pre-test was used to check for difference between the 
groups. Results from the questionnaire show that most of the 
students find PVC useful for introductory programming and 
more accessible than other PV tools.  

Kumalija et al. (2019) investigated students' perception of 
SunLab's features. Given that smartphones have a 
significantly smaller screen than other devices, the results 
were promising. The animations were fairly visible and text 
editor was moderately difficult to use. Students' also agreed 
that SunLab helped them understand programming concepts, 
with loops and functions obtaining the lowest score. 

TEDViT 
TEDViT was evaluated in classroom practices for learning 

sorting and search algorithms, and the difficulty of 
constructing T-Rule sets (Ihara et al., 2017; Yamashita et al., 
2015, 2016). Yamashita et al. (2017) found that software 
engineers without much experience with C found TEDViT's 

support for learning pointers valuable and were generally 
satisfied with practice sessions involving TEDViT.  

TEDViT (experimental group) was compared with 
ANIMAL (control group) in an experimental setting to 
evaluate its effectiveness for learning recursive functions. The 
results show that the experimental group achieved much better 
scores as well as a higher score increase ratio. Additionally, 
TEDViT obtained higher scores for almost all questions in a 
feedback questionnaire (Yamamoto et al., 2017). 

WinHIPE 
WinHIPE was used to compare the effectiveness of 

different engagement taxonomies on student learning: no 
viewing and viewing, constructing and no-viewing, and 
constructing and viewing. The experiment compared student 
scores based on three points of view. The global point of view, 
which gave a single point for each student showed no 
statistically significant difference. At the Bloom's level point 
of view, five scores were assigned to each student, each score 
for the questions related to a certain level of Bloom's 
taxonomy. Students that were engaged with WinHIPE 
obtained a statistically significant higher score at the analysis 
and synthesis levels. From the topic point of view, scores were 
calculated for each topic. At the topic level, the viewing group 
outperform both other groups on recursive functions, and the 
viewing and constructing groups outperformed the no-
viewing group with a statistically significant difference. With 
regard to long-term results of the study, the viewing and 
constructing groups had a statistically significant higher pass 
rate. The constructing group also had a statistically significant 
reduction in drop-out rate. Participants were satisfied with the 
use of WinHIPE (Urquiza-Fuentes & Velázquez-Iturbide, 
2013). 

2) Qualitative evaluations 
This section contains reviews on the qualitative 

evaluations of PV visualization features. We do not consider 
feedback from questionnaires and surveys as qualitative 
evaluation. 

Omnicode 
Omnicode was evaluated on a group of students who were 

asked to solve three introductory programming problems in 
Python using the system. A questionnaire was administered, 
and a debriefing interview was conducted. Although the 
results of the questionnaire were encouraging, it identified a 
potential problem with visual overload. Interview results 
report that students believe Omnicode is useful for helpful for 
the formation of correct mental models and for providing 
teaching and explanatory assistance. Students successfully 
used the visualization to debug their code and improve their 
mental models. The authors note that students used the 
scatterplot view provided by the system when explaining how 
the code works. An issue with Omnicode is the large amount 
of visualized data which leads to visual overload. Students 
suggested some improvements on how to reduce the number 
of scatterplots (Kang & Guo, 2017).  

UUhistle 
UUhistle was used in a phenomenography study to 

understand the way learners experience VPS and what they 
can learn from VPS. The authors conducted semi-structured 
interviews that revolved around VPS exercises. Results report 
six logically connected categories of various VPS perceptions. 
VPS is perceived as the manipulation of visual components 
and supported actions in the simplest category. In the richest 
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category, VPS is perceived as improving programming skills 
through understanding implementation concepts and what the 
computer does. The other four categories are between and 
form two branches of two categories. Both branches extend 
the simplest category and are extended by the richest. One 
branch emphasizes the operations of the computer, while the 
other emphasizes VPS as a platform for studying code 
examples and present concepts (Sorva, Lönnberg, & Malmi, 
2013).  

VIP 
Isohanni & Knobelsdorf (2013) studied how learners 

engaged with the visualization tool VIP. Their research was 
not based on any existing engagement taxonomy since this 
might lead, as the authors reason, to ignoring certain forms of 
engagement. After grouping user activities into several layers 
of abstractions, the authors recognized four groups that 
describe "levels of visualization engagement": no need for 
VIP, using VIP fully, using VIP partially, and unfinished use 
of VIP. These groups were further related to the internalization 
concept of activity theory. The authors also recognized four 
different phases of using VIP, which can be used to describe a 
learner's certain advancement in the use of VIP. The phases 
are introductory use of VIP, progressive use of VIP, routine 
use of VIP and creative use of VIP. 

Ville 
Ville was evaluated as a collaborative learning platform in 

different teaching scenarios (Laakso et al., 2018). 

3) Surveys 

Online Python Tutor (Codechella) 
Guo et al. (2015) evaluated how users interacted within the 

Codechella system. Here we focus only on the interaction with 
the visualization provided by OPT. Most of the actions with 
the visualization included stepping through the visualization. 
The average length of the programs was not reported in the 
study, but given that users asked help from others, we may 
assume that they had at least around a dozen lines of code. 
Although, it is not considered part of the visual 
representations, chatting is also included and is the second 
most recorded activity. Again, this makes sense since users 
needed to communicate explanations of code. It would be 
interesting to see which visualizations of concepts, algorithms 
or data structures correlate the most with the number of 
exchanged chat messages. Running and editing were reported 
as the least recorded activities. 

TM Visualization 
Al-Fedaghi & Alrashed (2014) carried out two 

experiments measuring student understanding of C++ 
programs using TM visual representations. The first 
experiment had a single group that used TM representations, 
while the second had two. Both experiments included one 
group that had no visualization. In both experiments, the 
groups that used FM representations had better scores in 
average. The second experiment also showed that the variance 
in scores is higher in the group without TM visualization. 
However, scheduling and registration limitations prevented 
more reliable analysis. In the context of engagement 
taxonomies, this one could be considered as a comparison of 
no viewing vs viewing.  

jGrasp 
jGrasp's viewers were investigated in several studies. 

They mostly investigated the systems' effectiveness towards 
learning algorithms and data structures. However, based on 

these, the authors refined the viewers for use in other courses, 
such as CS1. A survey of CS1 and CS2 educators from various 
faculties was carried out in 2011, which showed that the 
educators believe that jGrasp could have a positive impact on 
learning. These educators attended a workshop in 
visualization for CS1 and CS2. A year later, the authors 
surveyed students that used jGrasp in a CS2 course, which 
again showed a positive attitude towards jGrasp's canvas 
(Cross et al., 2014).  

The authors also conducted a survey on students enrolled 
in a CS1 course in 2013. Students were required to complete 
an in-lab activity that focused on binary and linear search in 
Java. Authors report that the students' felt that jGrasp had a 
positive impact on their learning (Cross et al., 2014). 

LISN 
LISN's visualization and language-independence aspects 

were evaluated on a group of lecturer assistants. The results 
were fairly positive, with some of the participants pointing out 
that additional details for variables are required. Incorporating 
new programming language support into LISN was 
considered simple (Sulistiani & Karnalim, 2018). 

PROVIT 
Yu Yan et al. (2014) evaluated PROVIT with a group of 

high-school students. About a half of the students said that 
they can understand C programs, and very few stated that they 
can write them. PROVIT-CI's features were evaluted by 
students and instructors (YAN et al., 2018). Results showed 
that the system was highly accepted by students, and 
instructors found it helpful during classroom lecture 
instructions.  

Thonny 
Annamaa collected Thonny activity logs from 44 students. 

While replaying the logs, the authors noticed some interesting 
working patterns. The authors report that students found 
Thonny helpful in dbugging their programs and they liked that 
the shell and editor were in the same window (Annamaa, 
2015).  

Virtual-C IDE 
Virtual-C IDE was evaluated by comparing three years of 

students' scores and failure rates. The first year saw students 
use commercial IDE, the second used Virtual-C in lectures 
and a commercial IDE for programming assignments, and 
only Virtual-C IDE was used in the third year. The failure rate 
dropped considerably in the final year, which also saw an 
increase in student scores. The integrated functional tests 
required students to fix their errors which lead to students 
spending more time on their programming assignments (D. 
Pawelczak & Baumann, 2014). 

Pawelczak (2016) found that a class which used the testing 
framework had a lower failure rate compared to the one that 
did not. The transparency of the tests encouraged students to 
more willingly comprehend their errors and lead to less time 
spent on debugging programs. 

VIII. VISUAL PROGRAMMING LANGUAGES 

Visual programming languages can be taught of as a 
subcategory of program visualization (Price et al., 1993). The 
visual representation of concepts provided by a VPL may be 
taught of as components of a visualization. Hence, novices 
must engage with the components provided in order to 
construct a working program. The result is a program itself as 
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well as a visual representation of its structure. Some VPLs, 
e.g. Scratch, have a theatre view which can animate the 
behavior of the program's concepts, or a subset of them. Some 
flowchart VPLs allow the user to step through the execution 
of a program (S. Xinogalos, 2013).  

A recent literature review on VPLs investigated the effects 
of using visual languages in introductory programming 
courses. The authors found that VPLs can have a positive 
effect on retention rates and interest in programming when 
used with the right age group. It was also reported that the 
choice of first programming language for learning 
programming is not as important as the teaching methodology. 
Preferred programming languages include Python and Java as 
text-based languages, and Scratch as a VPL. In a course 
setting, it may be beneficial to combine the use of a VPL and 
a textual programming language (Noone & Mooney, 2018).  

Many VPLs are intended to assist novices in learning to 
program. One of the most well-known examples is Scratch 
(Maloney et al., 2010), which provides block-based 
representations of programming concepts. Each block has a 
jigsaw-like shape which significantly simplifies syntax. VPLs 
are also often developed to assist non-programmers with some 
workflow. For example, LabView is a dataflow visual 
programming language (DFVPL) whose goal is to assist 
researches create applications (Alireza Kavianpour, 2014).  

There are different ways for classifying VPLs. Burnett & 
Baker (1993) proposed a classification system for VPL 
literature. They propose the classification of visual languages 
based on the programming paradigm or visual representation. 
Three main representations are identified: diagrammatic, 
iconic and static pictorial sequences. Myers (1990) also 
proposed a classification based on the visual representation of 
a language. The classification is much finer-grained. For 
example, the classification includes directed graphs and data 
flow as two categories, which are both diagrammatic 
representations. 

Zhang (2007) classifies visual programming languages as 
diagrammatic, icon, and form-based. Diagrammatic 
languages are composed of nodes that are connected with 
edges. Dataflow programming languages are a type of 
diagrammatic programming languages. Iconic programming 
languages use symbolic representations for variables, data 
types and control (S. Xinogalos, 2013). Icons are attached to 
one another and can be combined into more complex concepts 
(Bácsi & Mezei, 2019). An example of an iconic 
programming languages is Lego Wedo (“LEGO® Education 
WeDo 2.0 Core Set.,” n.d.). Based on their definition and 
similarity to Lego Wedo, Scratch, which is often referred to as 
a block-based programming language, would also be 
considered an icon programming language. Not all icon 
programming languages are block-based. Spreadsheets are an 
example of form-based programming languages (Zhang, 
2007). 

Bácsi & Mezei (2019) note that visual languages can also 
be categorized based on the relation type. Connection-based 
are, just like diagrammatic languages, represented with nodes 
and edges. Containment-based programming languages are 
those whose elements are embedded into other elements and 
combined to form visual sentences, e.g. Scratch.  

Xue et al. (2017) proposed a classification based on the 
execution model of visual programming languages. They 

identified control flow, data flow, state transition and 
constraint-based languages.  

Erwig et al. (2017) proposed an ontology for visual 
languages which characterizes specific languages through 
profiles. A profile of a visual language is the combination of 
essential and derived tags which capture the language's 
aspects. The authors identified four essential tags that 
characterize a languages visual representation: graph, 
partition, icon, text. This ontology does not make a distinction 
between VPLs and any other visual languages.  

Despite the many categorizations and taxonomies for 
VPLs, most of them fall into block-based and dataflow visual 
programming languages (Mason & Dave, 2017). Block-based 
programming language natively support programming in the 
imperative programming paradigm. DFVPLs' programming 
paradigm corresponds to functional programming. In the next 
section we will discuss DFVPLs in more detail. 

A. Dataflow visual programming languages 

Programs in DFVPLs are constructed by connecting nodes 
with edges. The resulting program is a directed graph. 
Different nodes may require different types and numbers of 
inputs and may produce one or more outputs. The execution 
starts from activation nodes that usually provide some data 
which flows downstream until it reaches a node without any 
output arcs (Johnston, Hanna, & Millar, 2004). The nodes 
transform the data as it flows through it. This transformation 
corresponds to the way functions chain together and transform 
data in functional programming languages.  

Nodes in a dataflow graph can be taught of as visual 
components of a notional machine. These components may 
operate at different levels of abstraction. For example, a 
dataflow visual language may provide low level instructions 
as nodes, such as basic mathematical operations. On a higher 
abstraction level, the nodes could provide functions 
implemented in another language, e.g. Python or Java 
(Johnston et al., 2004). Hence, depending on the target 
audience, dataflow languages may provide different 
components for constructing programs.  

There are two main execution modes in the dataflow 
model: data-driven and demand-driven. In the data-driven 
approach, a node executes as soon as data is available on all 
of its inputs. In the demand-driven approach, a node activates 
when it receives a request for its data. Requests are propagated 
upwards through input edges, and data is sent downwards 
through output nodes. In both cases, a node places the result 
of its execution on its output arcs (Hils, 1992; Johnston et al., 
2004).  

DFVPLs provide several key aspects which may help in 
understanding program execution. The graph representation 
of a program makes the relationship between program 
components explicit. Users can visually explore data for a 
more concrete programming experience. DFVPLs also 
provide visual feedback on different levels of liveliness 
(Johnston et al., 2004). The four levels of liveliness described 
in literature build upon one-another. A higher level includes 
all of the lower levels. On the informative level, the system is 
used only to document the program or assist with 
understanding it. The informative and significant level allows 
the user to execute the constructed program. The third level, 
informative, significant and responsive, encompasses systems 
which re-execute the graph whenever the user changes 



 19 

anything, e.g. modifying data. Finally, the fourth level also 
assumes that the system can process data streams while the 
user is editing the program (Hils, 1992; Tanimoto, 1990).  

An advantage of DFVPLs is that it provides explicit 
specification for task-level parallelism. All nodes whose data 
is available at the same time step may be executed in parallel 
(Hong, Oh, & Ha, 2017; Johnston et al., 2004).  

B. DFVPL issues 

A few notable issues with DFVPLs that have been 
recognized decades ago still seem to be open. These include 
visual representation and iteration and control constructs 
(Hils, 1992; Johnston et al., 2004; Sousa, 2012).  

1) Visual representation issues 
Visual representation issues arise when programs are 

constructed from a large number of nodes. Besides the 
program not fitting the screen, a visually complex program 
may be more difficult to comprehend than its textual 
counterpart. A solution that naturally arises is to provide 
hierarchical grouping of nodes. Complex groups of nodes are 
then represented as a single node (Sousa, 2012). 

2) Control and iterative construct issues 
Common control and iterative constructs found in textual 

programming languages control the flow of the program. 
However, nodes in a dataflow program transform data and 
control which nodes it flows to. Hence, it is difficult to transfer 
these constructs into a dataflow environment.  

Instead of common control structures, DFVPLs usually 
provide merge and switch blocks. The merge block takes two 
inputs and a Boolean "control" signal. The control signal 
determines which input will be forwarded as output. The 
switch takes a single input and a Boolean "control" signal. 
However, the switch block has two outputs. The Boolean 
signal determines to which output the data will forwarded 
(Johnston et al., 2004). 

Iteration constructs are much more difficult to represent. 
Although different DFVPLs proposed several different 
solutions, it remains an open issue. DFVPLs usually provide 
different nodes for different iteration constructs. Some 
DFVPLs like Show and Tell and LabView use nodes that 
encompasses other nodes which represent the body of the loop 
(Johnston et al., 2004). VIPERS provides an iteration construct 
that does not encompass other nodes. Rather, different output 
edges are used to connect the body and continuation once the 
loop exits. It also requires a feedback control signal to 
determine when the execution of the next iteration should take 
place. The two examples provided represent two main 
approaches for representing iteration constructs: the first avoid 
cycles in a program graph, and the second uses them (Mosconi 
& Porta, 2000).  

A key issue that makes iterative construct difficult to 
represent is that they are required to mutate some state. This 
requirement infringes the single assignment rule natural for 
dataflow programs (Mosconi & Porta, 2000).  

C. Actors and dataflow 

The actor model is a message-passing concurrency model 
first introduced as a formalism in artificial intelligence (Čolak 
& Čuvić, 2019; Hewitt, Bishop, & Steiger, 1973). Basic 
primitives in the actor model are actors, i.e. computational 
agents, which are autonomous and operate asynchronously 
and concurrently. Actors can communicate with each other by 

sending messages and exhibit some behavior when a message 
is received. After receiving a message, an actor can carry out 
computations, change its behavior, create new actors, reply to 
a message or update some local state (Agha, 1986).  

Actors have a mailbox for storing messages, which are 
commonly stored in a queue. Each actor in the actor model 
sequentially processes the messages from the mailbox in a 
FIFO fashion. The programmer does not need to worry about 
thread management or locking (“Actors • Akka 
Documentation,” n.d.). These aspects of the actor model 
simplify reasoning about the execution of concurrent 
programs.  

In the dataflow model, a node may be taught of as an actor. 
An actor is viewed as a processing node which exhibits some 
behavior when a message is received. Messages exchanged 
between actors can be taught of as communication channels, 
or edges (Sousa, 2012). However, the relationship between the 
models seems to require that the graph is a type of Kahn 
processing network. In Kahn processing networks, 
communication is achieved through unidirectional FIFO 
queues, where writes are nonblocking and reads are blocking 
operations (Lee & Parks, 1995).  

IX. VISUALIZATIONS FOR TEACHING 

In this section we introduce two visualization systems that 
we have developed for teaching and learning. The first system 
which we will describe is a DFVPL for learning introductory 
and functional programming that we call PARVIS. The 
second system is AkkaVisual, which is a PV system for 
visualizing actor programs.  

A. PARVIS for introductory programming 

PARVIS is a web based DFVPL initially developed for 
teaching introductory programming. The system combines 
certain aspects found in PV systems with the DFVPL.  

Controlled viewing that is implemented in many PV 
systems allows users to control the execution of the program 
in a step-by-step fashion and highlights the currently 
executing instruction. PARVIS similarly allows the user to 
step through the execution of the program graph. Programs are 
parsed and executed in the background to determine the 
number of steps needed to completely execute the program. 
The parser uses a modified BFS algorithm to traverse the 
program graph. The result of the parser is a key-value data 
structure. The key is a step in the execution and the value 
contains all of the nodes that will be executed at that step 
(Aglić Čuvić, 2018).  

In the case where two nodes are mutually independent, it 
is problematic to determine which node should be highlighted 
first. Therefore, all of them are highlighted simultaneously. 
The step through can be taught of as visiting the nodes in a 
fashion similar to breadth-first search (BFS).  

It is possible to have a situation in which node A expects 
multiple inputs and one, from node B, becomes available at an 
earlier step than the others. In this situation, node B will be 
highlighted for each successive step until all of the other inputs 
to A become available.  

PARVIS provides different types of variable nodes for 
numbers, strings, Boolean values and arrays. For each value 
stored in a variable node, there is a textbox that prints it out. 
Users can edit the value if the node does not have any inputs 
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connected. Therefore, the user can see the state of the program 
at each step.  

We wanted to be able to demonstrate Python programs 
with PARVIS. Hence, the system provides print and input 
nodes. Just as Python's print instruction can take an arbitrary 
number of string arguments, the print node can take an 
arbitrary number of inputs. The values of the inputs are printed 
in a designated area in the order of their position on the canvas 
along the Y-axis. When the input node is executed, a modal 
window opens for the user to enter the value. These behaviors 
are similar to how PV systems handle input and print 
instructions.  

Control flow nodes include if, elif, and else. Because we 
wanted the nodes to behave similarly to Python instructions, 
their output edges do not carry data. They just provide a way 
to add nodes to the program that will execute after the control 
flow node. However, the output edges of these nodes must be 
connected to activation nodes, such as variables. The system 
color codes which branch of the program will be executed. 
Merge and distributor block are also provided.  

An example program is given in Fig. 2. The program in the 
image prints out a message depending whether the input to the 
if node is true or false. The highlighted print node prints the 
value in a special output area. The output area is also 
highlighted to signalize that a print occurred.  

PARVIS also provides a node for Python's for loop. The 
node is actually a two-part node that consists of a head and 
body node. The nodes are connected via an edge directed from 
the head to the body, which is not considered an input arc. The 
body node encompasses all of the nodes that will be executed 
in each iteration. When a user connects an encompassed 
node's output to the loop body, an output and corresponding 
input port are generated. The value of the node then re-enters 
the body node at the corresponding input port.  

The system also supports a high level of liveliness. The 
program is re-evaluated up to the current step whenever the 
user edits the program or changes a variable value. Hence, it 
provides instant visual feedback about the effect of user 
actions on the program.  

We used PARVIS in an experimental setting with a group 
of students enrolled in the application of computers course at 
the Faculty of Chemical Technologies. Students were 
studying the basics of Python programming: variables, control 
constructs and the for loop. The system was used to 
demonstrate Python programs and students were urged to use 
the system. The other group was given static flowchart 
representations of the examples.  

From our experience, the students used PARVIS to some 
extent to execute the given examples. However, they did not 
like the system. The visual representations were too complex 
for the short and simple programs that they were given. We 
have not yet statistically analyzed the collected data.  

We concluded that the low granularity of PARVIS and 
complex visual representations were not appropriate for 
teaching simple Python programs.  

B. PARVIS for functional programming 

We later extended PARVIS with additional nodes to 
support teaching and learning functional programming. Since 
the programming paradigm of dataflow languages correspond 
to the functional programming paradigm, the extension 

seemed natural. As functions transform input data, so do the 
nodes in a dataflow language. Hence, we added nodes for the 
map, filter and reduce functions among others.  

The input to the introduced higher order functions needs 
to be an array. Map and filter produce new arrays, and the 
output type of the reduce depends on the accumulator value 
which the user needs to enter. When the execution step reaches 
an array node, the parser uses a modified DFS algorithm to 
determine a subgraph that starts from the array and ends either 
with the end of the program or another variable type node. 
Once finished, new stepping controls become visible on the 
interface. These allow the user to step through the elements in 
the array. At each step the current array element and subgraph 
are highlighted. If the subgraph ends with a variable type, then 
the transformation of values is visible for each step. For 
example, if the subgraph is array-map-map-array2, the result 
of passing the element through the two maps is added to 
array2. The next step will add the second element and so on. 
The added functionality allows users to inspect how an array 
is transformed per element when data flows through a chain 
of functions.  

One of the limitations of the system is that higher-order 
function nodes do not provide a way to define function 
parameters. Instead, the user needs to write a function in 
JavaScript.  

PARVIS was used in eight lab sessions in which students 
were taught functional programming. The lab sessions usually 
included up to 7 students. We gave the students examples in 
both PARVIS and JavaScript and assignments which the 
students were required to program in PARVIS. They were 
reluctant to use the system at first but accepted it after the first 
or second session. The second to final session included a 
preliminary test with three assignments in JavaScript and three 
in PARVIS. For the final session we administered a test with 
four assignments, two of which had to be programmed in 
JavaScript and two in PARVIS. JavaScript and PARVIS 
assignments were similar and had a comparable difficulty. An 
additional assignment was given for which students could 
choose the implementation language.  

Because the system was still in its prototype stage, it could 
not detect syntax and semantic errors in parameter functions. 
Therefore, if an error occurred inside the parameter functions, 
students were often required to reload the DFVPL web page. 
The problem caused some difficulties with the system's 
usability.  

 

Fig. 2 An example program in Parvis 

 

Fig. 3 An example of executing arrays element-wise 
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Since students are not used to think functionally, they may 
start program in an imperative style. One of the benefits of the 
DFVPL was that it forced students to use functional 
programming. One student commented that the "system 
directs towards the functional programming paradigm… 
here's five nodes and figure it out". We still observed students 
using the imperative programming paradigm for some 
assignments or parameter functions.  

Seven students took the final test during the eight session. 
The average score of the assignments in JavaScript 
(avg=2.857) was lower than those in PARVIS (avg=4.286). 
An additional three students took the test at a later time, their 
average score for JavaScript assignments (avg=4.333) was 
slightly higher than the PARVIS average score (avg=4). 
Combining all student scores give an average that favors 
PARVIS (avg=4.2) over JavaScript (avg=3.3).  

The scores show that using PARVIS did not have a 
negative effect on learning functional programming. Because 
of the small number of students and lack of a structured test, 
more rigorous statistical analysis is not possible. However, the 
observed scores are encouraging. They indicate that PARVIS 
could assist students with learning functional programming. 
However, additional work on the system is needed to 
eliminate possible bugs.  

C. AkkaVisual 

AkkaVisual is a PV system for visualizing actor programs. 
It visualizes actors in a program and their communication 
channels. Hence, it corresponds to a visualization of a 
message-passing notional machine (Sorva, 2013). The system 
currently offers viewing the visualization while the program 
is executing. Actors are represented as nodes in a graph and 
the message channels are edges. The system also displays a 
timeline of message sent events. Messages are order according 
to the vector clock algorithm (Čolak & Čuvić, 2019).  

AkkaVisual is a web-based application that collects JSON 
data published to an exposed API by the running program. The 
data will typical contain information about the sender and 
receiver actors, such as their name and type. It will also 
contain certain details about the message, such as the type and 
value contents. Once a JSON object is received, the server side 
of the application uses SignalR to push it to the client-side 
(Čolak & Čuvić, 2019; “Real-time ASP.NET with SignalR | 
.NET,” n.d.).  

Any standard HTTP POST request can send data to the 
API. The separation of the visualization from the program 
itself allows AkkaVisual to support visualizing OO and agent-
based programs. The executing programs simply need to 
publish the required data in the correct format (Čolak & Čuvić, 
2019).  

At our Faculty, we use C# and Akka.NET to teach the 
actor model. For convenience, we implemented a custom actor 
mailbox intercepts received messages and publishes a copy of 
them to AkkaVisual. The mailbox can be easily added to a 
student project and actors can be configured to use it via 
config file. Fig. 4 shows an overview of this process (Čolak & 
Čuvić, 2019). 

AkkaVisual was evaluated in a pilot study with a group of 
students. Unfortunately, students did not have an opportunity 
to use the system. Therefore, we demonstrated its 
functionality in front of them. Data was collected using a 

questionnaire which consisted of seven 5-point Likert-scale 
questions and an open question. The Likert-scale questions 
asked students to rate how useful they thought the system and 
some of its existing, and planned features, are for learning 
actor programming. The open question was included so that 
students could share their thoughts about the system. Students 
that did not take the course were excluded from the data 
analysis process. A total of 19 students filled out the 
questionnaire, and 11 answered the open question. Descriptive 
statistics were used to analyze the quantitative data and 
content analysis for the qualitative (Čolak & Čuvić, 2019).  

Results of the descriptive analysis are given in Table 6. All 
of the mean and median scores are high, which indicates that 
students believe that the system and its features could be 
useful when learning actor programming. We briefly 
comment on some of them. 

The highest scored feature is saving and replying the 
visualization at will (avg=4.53). We plan to implement this 
feature in the future. Possible explanations for this high score 
include: 1) wanting to share the visualization without sharing 
the program and 2) saving time. Regarding the first 
explanation, a saved replay would allow students to help their 
peers without sending them the solution of an assignment. 
Students that struggle with an assignment could compare their 
visualization to that of a correct solution. The second 
explanation is that students do not want to re-run the 
application multiple times because it might have long-running 
computations or require multiple inputs that need to be entered 
manually  (Čolak & Čuvić, 2019).  

The second highest scored feature (avg=4.37) is the 
information provided about the actors and the messages they 
exchange. An actor system may have different types of actors 
that handle multiple types of messages. Students often find it 
difficult to understand which communication channels are 
formed and to find bugs when they send a message of the 
wrong type. Hence, providing information about the actors 
and their message exchanges might alleviate some of the 
difficulties (Čolak & Čuvić, 2019).  

Students also gave high scores to other existing and 
planned features (avg >= 4.21). They also believe that the 
system is adapted for students learning about actors for the 
first time(avg=4.05) (Čolak & Čuvić, 2019).  

Using content analysis, we derived eight codes from the 
responses to the open question. These eight codes are grouped 
into three categories: positive about the tool, the tool needs 
improvements and tool isn't useful. The category positive 
about the tool contains cods that indicate that AkkaVisual 
could be useful for teaching the actor model. The second 
category is related to improvements and new features 
required. Finally, the third category contains codes for 
answers that believe the tool will not help with learning the 
actor model. Fig. 5 shows an overview of the categories and 
codes derived with content analysis (Čolak & Čuvić, 2019).  

 

Fig. 4 An overview of how data is collected and displayed in 

AkkaVisual 
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TABLE 6 DESCRIPTIVE RESULTS FOR AKKAVISUAL FEATURES (PILOT STUDY) 

# Question 
Score 

Avg Std. 

deviation 

Mode Median N 

1 The tool is adapted for first-year graduate students learning about the actor model 
for the first time. 

4.05 0.911 4 4 19 

2 I would like to see a timeline of the execution of each thread or process where the 

exact time of sending and receiving each message is displayed. 

4.21 0.976 5 5 19 

3 The replay feature seems useful. 4.16 0.898 5 4 19 

4 The timeline seems to be useful in visualising the concurrency of the system. 4.32 0.749 5 4 19 

5 It is useful to see the features of the messages sent and the type of the actor. 4.37 0.761 5 5 19 

6 It would be useful to save the generated visualisation and play it without rerunning 
the program. 

4.53 0.697 5 5 19 

7 It would be useful to send a message to an actor from the web application. 4.32 0.582 4 4 19 

Code frequencies are given in Table 7. From the code 
frequencies we can conclude that the students' general opinion 
of the system is positive. Students believe that AkkaVisual can 
assist them with learning the actor model. Some participants 
expressed their desire to use the system in class. One student 
pointed out that they "will use it [AkkaVisual] when taking 
the course", while another believes he/she would achieve a 
batter grade: "I think my results in the course would have been 
better with the use of this visualization".  

The results obtained from this pilot study seem promising 
and motivate further development of the system. The main 
limitations of the study were the number of students and that 
they did not have an opportunity to use the visualization 
themselves.  

X. VISUAL PROGRAMMING AND DATA SCIENCE 

In this brief section we will discuss the application of 
visualizations for data science. The field has become 
increasingly popular in recent years, with deep learning 
models achieving record scores on benchmark problems. 
Python still seems to be one of the most popular languages for 
data science, with TensorFlow (“TensorFlow,” n.d.), Pytorch 
(“PyTorch,” n.d.) and Keras (“Home—Keras 
Documentation,” n.d.) some of the most popular Deep 
Learning frameworks (Wongsuphasawat et al., 2018).  

The goal in data science is to come up with a statistical 
(e.g. predictive) model that will accurately describe the given 
data. Experts often need to experiment with different models 
and parameters to achieve satisfactory results.  

Some libraries, such as Keras, facilitate fast prototyping 
and experimentation by providing high-level APIs. That way, 
researchers do not need to implement the algorithms 
themselves. However, they still need to understand these 
complex models in order to optimize them.  

Several APIs use the dataflow model to facilitate the 
development of deep learning models. TensorFlow Graph 
Visualizer is a tool that generates an interactive visualization 
of TensorFlow models. Visualizations are represented as 
dataflow graphs in which nodes are groups of operations. The 
system can assist developers with understanding their models 
and inspecting their structure. Users can also extend certain 
nodes to inspect their nested structure (Wongsuphasawat et 
al., 2018).  

DeepVisual is a visual programming tool implemented as 
a PyCharm plugin. Instead of programming, developers can 
focus on the design of their deep learning models. The system 
provides different visual components to represent different 
types of layers, which can be connected to each other to 
construct deep neural networks. DeepVisual can generate the 
code from the visual graph structure, and vice-versa (Xie, Qi, 
Ma, & Zhao, 2019).  

StatWire is an IDE for R which visualizes the 
transformation of data using a dataflow visual representation. 
One of the main goals of the system is to facilitate thinking in 
a modular way. The system provides two types of 
components: statlets as processing nodes, and viewlets for 
printing or plotting data. When the user creates a statlets an 
empty function in an R script is created. Code changes made 
by the user result in a live update of the visualization 
(Subramanian et al., 2018).  

Orange3, is a dataflow visual language for designing 
machine learning and data mining applications. Its 
components, called widgets, support interactive data 
exploration. The system provides a widget for programming 
Python scripts and an API for adding new widgets. Orange3 
can be used without any programming knowledge. The user 
simply drags the widgets and connects them (Demšar, Zupan, 
Leban, & Curk, 2004; “Orange3,” n.d., p. 3).  

TABLE 7 CODE FREQUENCIES OBTAINED WITH CONTENT ANALYSIS 

Code Frequency Percentage 

the tool will facilitate learning 5 45,45% 

suggests classroom or personal 

use 

3 27,27% 

add additional features 2 18,18% 

helps to perceive actor systems 2 18,18% 

improve user-friendliness 2 18,18% 

requires theoretical knowledge 1 9,09% 

allows theory consolidation 1 9,09% 

 

Fig. 5 A map of categories and codes derived by content analysis 
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XI. CONCLUSION 

In this paper we reported our findings from conducting a 
literature review on PV systems. We identified several new 
PV systems, some of which are research prototypes, while 
others could become long-term systems. Most of the 
evaluation papers that we reviewed reported that participants 
have a positive attitude towards PVs. Some papers also 
reported a positive effect on students' programming abilities.  

We then discussed VPLs in general and provided an 
overview of several taxonomies. Our focus was on DFVPLs 
as a subcategory of VPLs. DFVPLs are often designed to 
provide non-programmers the ability to quickly develop 
specific types of applications. We presented PARVIS, a 
DFVPL that incorporates some features commonly found in 
PVs.  

PARVIS was used with novice programmers and students 
learning functional programming. The system proved to be 
too complex for novice programmers. However, the average 
test score on assignments programmed in PARVIS were 
higher than those programmed in JavaScript. This result 
indicates that PARVIS could have a positive impact for 
learning functional programming and perhaps other more 
complex topics. 

AkkaVisual was also described as a visualization system 
for actor programs. The system can also visualize the 
interactions between different programming entities such as 
objects and agents. Users simply need to provide the system 
with data that contains the required information in JSON, such 
as sender and receiver. The pilot study showed that students 
had a positive attitude towards AkkaVisual and would like to 
have used it for learning about the actor model.  

For future work, we would like to extend the functionality 
of AkkaVisual. First, we would like to add some of the 
features that students scored in the questionnaire. Secondly, 
we would like to evaluate its usability in an experimental 
setting. Finally, we would like to develop additional 
components that would allow simpler visualization for OO 
and agent-based programs.  

We would also like to inspect the usability of using 
existing simulation systems, such as NetLogo, as a 
visualization interface. Using NetLogo in this way could lead 
to a higher engagement level and more customization options 
for teachers. Teachers could prepare procedures that the 
student could use to view the visualization from a different 
perspective. Students could also use the NetLogo language to 
manipulate and further play with the visualizations.  
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The table in this appendix contains a list of the PV related 
papers that we identified through literature search. 
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