Code PMB065 Year of study 1 Course teacher Prof. Jasna Puizina, PhD Credits (ECTS) 3 Associate teachers Type of instruction (number of hours) L S E F Status of the course Elective Percentage of application of e- learning 10% 15 15 Course objectives Elective Percentage of application of e- learning 10% 15 10% Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. None. Course objectives After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment of the course (4 to 10 None. Learning outcomest expected at the level of the course (4 to 10 Master basic knowledge of cell biology and evolution of organisms • Interpret how environmental changes affect ecosystem changes Course content broken down in detail by weekly class schedule (syllabus) • Living and non-living nature (3 + 1 h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosome	CodeCourse teacherAssociate teachersAssociate teachersStatus of the courseCourse objectivesCourse enrolmentrequirements andentry competencesrequired for thecourseLearning outcomesexpected at the levelof the course (4 to 10learning outcomes)	PMB065 Prof. Jasna Puizi	na, PhD	Year of st	udv	1									
Course teacher Prof. Jasaa Puizina, PhD Credits (ECTS) 3 Associate teachers Type of instruction (number of hours) L S E F Associate teachers Elective Percentage of application of e- learning 10% 10% Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology, Mastering the basics of genetics and ecological relationships between organisms. None. Course enrolment requirements and entry competences required for the course After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment • Master basic knowledge of cell biology and evolution of organisms • interpret basic genetic principles • interpret basice	Course teacher Associate teachers Status of the course Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Prof. Jasna Puizi	na. PhD		uuy	1									
Associate teachers Type of instruction (number of hours) L S E F Status of the course Elective Percentage of application of e- learning 10% 10 Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. None. Course objectives After successfully passing the course, students will be able to: - Recognize the importance of living organisms in relation to the environment - Master basic knowledge of cell biology and evolution of organisms - interpret basic genetic principles - interpret have genetic principles - interpret how environmental changes affect ecosystem changes Course content by weekly class schedule (syllabus) - Living and non-living nature (3 + 1 h). - Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. - (3 + 1h). - Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). - Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). - Mitochondria - respiration, chloroplast - photosynthesis, peroxisomes (3 + 1h). - Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). - Ecological concepts and relations of organisms in biocenoses (3 + 1h). - Ecological concepts and relations of organisms in biocenoses (3 + 1h). - Edoplasmic retignation, chloroplast - photosynthesis, peroxisomes (3 + 1h). - Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). - Edolgical concepts and relations of organisms in biocenoses (3 + 1h). - Edolgical concepts and relations of	Associate teachers Status of the course Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)			Credits (E	ECTS)	3									
Associate teachers Image of hours) 30 15 Status of the course Elective Percentage of application of elearning 10% Status of the course Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships of the course and ecological relationships of living organisms in relation to the environment Course enrolment requirements and entry competences required for the course (4 to 10 After successfully passing the course, students will be able to: Recognize the importance of living organisms in relation to the environment expected at the level of the course (4 to 10 Naster basic knowledge of cell biology and evolution of organisms interpret how environmental changes affect ecosystem changes Course content broken down in details Utiving and non-living nature (3 + 1 h). Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). Edoplasmic reticulum, Golgi apaparatus, lysosomes (3 + 1h). Mitchohoria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Course content broken down in details Mitchohoria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Stended (syllabus) Eledoplasm	Associate teachers Status of the course Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)			Type of i	Type of instruction		S	Е	F						
Status of the course Elective Percentage of application of e- learning 10% COURSE DESCRIPTION Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course enrolment requirements and curty competences required for the course After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment • None. Learning outcomes of the course (4 to 10) After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment • Naster basic knowledge of cell biology and evolution of organisms • Interpret basic genetic principles • interpret how environmental changes affect ecosystem changes • interpret into environment (3 + 1 h). • Edoloplasmic reticulum, Golgi apparatus, lysosomes (3 + 1 h). • Embryo	Status of the course Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)			(number of	(number of hours)			15							
Status of the course Interver application of e- learning Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course content requirements and entry competences required for the course After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment • Master basic knowledge of cell biology and evolution of organisms • Interpret how environmental changes affect ecosystem changes Course content broken down in detail by weekly class schedule (syllabus) • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplogical concepts and relations of organisms in biocenoses (3 + 1h). • Endoplogical concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concept	Status of the course Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Elective		Percentao	e of	10%	10%								
Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basics principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course enrolment requirements and entry competences expected at the level of the course (4 to 10 learning outcomes) After successfully passing the course, students will be able to:	Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Licenve		applicatio	n of e-	1070									
COURSE DESCRIPTION Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course enrolment requirements and expected at the level of the course (4 to 10) learning outcomes None. Production of the course (4 to 10) learning outcomes • Recognize the importance of living organisms in relation to the environment entry competences None • Recognize the importance of living organisms in relation to the environment entry competences • After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment entry competences • Recognize the importance of living nature (3 + 1 h). • Neaster basic knowledge of cell biology. • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Drokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Coll cycle, mitosis, meiosis (spermatogenesis, ogenesis), fertilization (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Coll cycle, mitosis, meiosis of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organis	Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)			learning											
Course objectives Introducing students to the relationships of living and non-living nature. Understanding the basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course enrolment requirements and entry competences required for the course None. Learning outcomes expected at the level of the course (4 to 10) learning outcomes) After successfully passing the course, students will be able to: Recognize the importance of living organisms in relation to the environment Master basic knowledge of cell biology and evolution of organisms Interpret basic genetic principles interpret how environmental changes affect ecosystem changes Living and non-living nature (3 + 1 h). Protaryotes, eukaryotes, plant-animal relationships (3 + 1h). Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. (3 + 1h). Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Cle cycle, mitosis, meiosis (spermatogenesis, ogenesis), fertilization (3 + 1h). Esclogical concepts and relations of organisms in biocenoses (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Baboratory	Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	COURSE DESCRIPTION													
Course objectives basic principles of cell biology. Mastering the basics of genetics and ecological relationships between organisms. Course enrolment required for the course and entry competences required for the course None. Learning outcomes expected at the level After successfully passing the course, students will be able to: Recognize the importance of living organisms in relation to the environment Master basic knowledge of cell biology and evolution of organisms Interpret basic genetic principles interpret how environmental changes affect ecosystem changes Living and non-living nature (3 + 1 h). Prokaryotes, cukaryotes, plant-animal relationships (3 + 1h). Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. (3 + 1h). Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oegenesis), fertilization (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in multimedia exercises on line in entirety partial e-learning finde work (other) Studen	Course objectives Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Introducing students to the relationships of living and non-living nature. Understanding the													
Detween organisms. Course enrolment requirements and entry competences required for the course None. Learning outcomes expected at the level of the course (4 to 10) After successfully passing the course, students will be able to: • Recognize the importance of living organisms in relation to the environment • Master basic knowledge of cell biology and evolution of organisms • Interpret basic genetic principles • interpret basic genetic principles • interpret how environmental changes affect ecosystem changes Course content broken down in detai by weekly class schedule (syllabus) • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis), ogenesis), fertilization (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological elearning	Course enrolment requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	basic principles of cell biology. Mastering the basics of genetics and ecological relationships													
Course content After successfully passing the course, students will be able to: Learning outcomes After successfully passing the course, students will be able to: Recognize the importance of living organisms in relation to the environment Master basic knowledge of cell biology and evolution of organisms I herrore to a sing outcomes expected at the level of the course (4 to 10) I herrore to assic knowledge of cell biology and evolution of organisms I herrore to assic knowledge of cell biology and evolution of organisms I herrore to assic knowledge of cell biology and evolution of organisms I herrore to assic knowledge of cell biology and evolution of organisms I herrore to assic knowledge of cell biology and evolution of organisms I Living and non-living nature (3 + 1 h). Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. (3 + 1h). Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h).	requirements and entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	between organisms.													
entry competences required for the course course After successfully passing the course, students will be able to: Learning outcomes •Recognize the importance of living organisms in relation to the environment expected at the level of the course (4 to 10) •Interpret basic genetic principles interpret basic genetic principles •Interpret basic genetic principles interpret dasic genetic principles •Interpret basic genetic principles is addition of molecular biology. •(3 + 1h).	entry competences required for the course Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	ivone.													
required for the course After successfully passing the course, students will be able to: Learning outcomes expected at the level of the course (4 to 10] learning outcomes) After successfully passing the course, students will be able to: · Recognize the importance of living organisms in relation to the environment · Recognize the importance of living organisms in relation to the environment · Master basic knowledge of cell biology and evolution of organisms · Interpret basic genetic principles · Interpret how environmental changes affect ecosystem changes · Living and non-living nature (3 + 1 h). · Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). · Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. · (3 + 1h). · Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). · Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). · Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). · Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). · Aging and death, viruses (HIV), tumors (3 + 1h). · Ecological concepts and relations of organisms in bioeconeses (3 + 1h). · Ecological concepts and relations of organisms in bioeconeses (3 + 1h). · Ecological concepts and relations of organisms in bioeconeses (3 + 1h). · Eledwork independen	Learning outcomes expected at the level of the course (4 to 10 learning outcomes)														
Learning outcomes After successfully passing the course, students will be able to: Learning outcomes Recognize the importance of living organisms in relation to the environment expected at the level of the course (4 to 10) learning outcomes of the course (4 to 10) learning outcomes After successfully passing the course, students will be able to: Recognize the importance of living organisms in relation to the environment expected at the level of the course (4 to 10) learning outcomes Master basic genetic principles Interpret how environmental changes affect ecosystem changes Interpret how environmental changes affect ecosystem changes Course content broken down in detail Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. (3 + 1h). Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), of erilization (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Bectures independent assignments </td <td>Learning outcomes expected at the level of the course (4 to 10 learning outcomes)</td> <td colspan="10"></td>	Learning outcomes expected at the level of the course (4 to 10 learning outcomes)														
Learning outcomes • Recognize the importance of living organisms in relation to the environment expected at the level of the course (4 to 10) • Recognize the importance of cell biology and evolution of organisms • Interpret basic genetic principles • Interpret basic genetic principles • interpret how environmental changes affect ecosystem changes • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. • (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecolo	Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	After successfully passing the course, students will be able to:													
Master basic knowledge of cell biology and evolution of organisms Interpret basic genetic principles interpret how environmental changes affect ecosystem changes Itripret how envices Itri	of the course (4 to 10 learning outcomes)	• Recognize the i	mportance	of living organ	isms in relation	to the env	vironmen	t							
tearning outcomes) • interpret oast generic principles • interpret oast generic principles • interpret how environmental changes affect ecosystem changes • interpret how environmental changes affect ecosystem changes • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. • (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization in plants and animals (3 + 1h). • Aging and death, viruses (HIV), tumors (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Con line in entirety □ independent assignments □ multimedia	learning outcomes)	 Master basic kr Interpret basic 	nowledge of	f cell biology a	nd evolution of	organisms	5								
• Living and non-living nature (3 + 1 h). • Living and non-living nature (3 + 1 h). • Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). • Membrane and transports across membrane, nucleus DNA, RNA, Central dogma of molecular biology. • (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). • Aging and death, viruses (HIV), tumors (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (interpret basic j interpret how end 	nvironment	al changes affe	ct ecosystem ch	anges									
 Prokaryotes, eukaryotes, plant-animal relationships (3 + 1h). Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. (3 + 1h). Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Format of instruction Getures independent assignments seminars and workshops multimedia exercises on line in entirety partial e-learning work with mentor field work (other) Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. 		Living and r	on-living n	$\frac{c}{ature (3 + 1 h)}$		0									
• Membrane and transports across membrane, nucleus, nucleus DNA, RNA, Central dogma of molecular biology. • (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization in plants and animals (3 + 1h). • Aging and death, viruses (HIV), tumors (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Bectures independent assignments • on line in entirety indepratory • partial e-learning work with mentor • field work (other) Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam.		• Prokaryotes,	eukaryotes	s, plant-animal	relationships (3	+ 1h).									
Course content is (3 + 1h). broken down in detail by weekly class schedule (syllabus) Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Electures Independent assignments Induction Work with mentor Inductory Inductotenos		• Membrane a	nd transpor	ts across mem	orane, nucleus,	nucleus D	NA, RNA	A, Centra	ıl						
Course content broken down in detail by weekly class schedule (syllabus) • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Endoplasmic reticulum, Golgi apparatus, lysosomes (3 + 1h). • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). • Aging and death, viruses (HIV), tumors (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and workshops □ independent assignments □ multimedia □ seminars and workshops □ laboratory □ work with mentor □ field work □ (other) Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all lab		dogma of models (3 + 1h)	olecular bio	ology.											
broken down in detail • Mitochondria - respiration, chloroplasts - photosynthesis, peroxisomes (3 + 1h). • Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). • Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). • Aging and death, viruses (HIV), tumors (3 + 1h). • Basics of inheritance, Mendel's laws, mutations (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Ecological concepts and relations of organisms in biocenoses (3 + 1h). • Bectures independent assignments • seminars and workshops multimedia © exercises work with mentor • field work (other) Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook. They need to pass 2 written colloquia or one written exam.	Course content	 Endoplasmic 	c reticulum,	Golgi apparat	us, lysosomes (3	3 + 1h).									
 Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h). Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and workshops Entremative organisms in biocenoses (3 + 1h). Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook. They need	broken down in detail	• Mitochondri	a - respirati	on, chloroplas	s - photosynthe	sis, peroxi	isomes (3	+ 1h).							
 Embryonic development, genetic regulation, model of operon, differentiation in plants and animals (3 + 1h). Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Independent assignments multimedia work with mentor multimedia work with mentor motebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 	schedule (svllabus)	• Cell cycle, mitosis, meiosis (spermatogenesis, oogenesis), fertilization (3 + 1h).													
Aging and death, viruses (HIV), tumors (3 + 1h). Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and workshops Eseminars and workshops Induction Ecological concepts and workshops Induction Ecological concepts and workshops Induction Ecological concepts and workshops Induction Econcepts and telearning Induc		• Embryonic development, genetic regulation, model of operon, differentiation in plants													
 Basics of inheritance, Mendel's laws, mutations (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Ecological concepts and relations of organisms in biocenoses (3 + 1h). Independent assignments Independent assign		 and animals (3 + 1h). Aging and death viruses (HIV) tumors (3 + 1h) 													
 Ecological concepts and relations of organisms in biocenoses (3 + 1h). Bectures Independent assignments Independent asteast Independent assignments Indepen		 Basics of inheritance, Mendel's laws, mutations (3 + 1h). 													
Format of instruction Image: lectures independent assignments independent assignmentaspecter independent assignments independent		• Ecological concepts and relations of organisms in biocenoses (3 + 1h).													
Format of instruction seminars and workshops multimedia Student responsibilities on line in entirety work with mentor Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 0.5 Practical	Format of instruction	⊠ lectures			□ independer	dent assignments									
Format of instruction Image: exercises in the		\Box seminars and ∇	workshops		□ multimedia	nultimedia									
Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 0.5 Practical		\boxtimes exercises	rotu		⊠ laboratory	1									
Student responsibilities G field work G (other) Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 0.5 D Practical		\Box partial e-learn	ing		\Box work with	mentor									
Student responsibilities Students should attend all exercises and at least 70% of lecture hours. They should have a notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 0.5 Practical		\Box field work	ing		□ (oth	ler)									
Student responsibilities notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a notebook. They need to pass 2 written colloquia or one written exam. Class 0.5 Practical	Student	Students should attend all exercises and at least 70% of lecture hours. They should have a													
Class O.5 D.1 Practical	Student	notebook, work coat, drawing utensils and all laboratory exercises must be recorded in a													
Class Q 7 P 1 Practical	responsionnues	notebook. They need to pass 2 written colloquia or one written exam.													
Screening student U.S. Research	Screening student	Class	0.5	Research		Practica	1								
work (name the	work (name the proportion of ECTS credits for each activity so that the total number of ECTS	attendance	0.5	Researen		training									
proportion of ECTS Experimental work 1 Report (Other)		Experimental	1	Report		(Other)								
activity so that the Seminar		WUIK		Seminar											
total number of ECTS Essay (Other)		Essay		essay		()	Other)								
credits is equal to the Tests Oral oxam (Other)	credits is equal to the			*	İ	(Othor)								

<i>ECTS value of the course)</i>	Written exam	1.5	Project		(Other	.)					
Grading and evaluating student work in class and at the final exam	Max.100 points = 70 points (lectures) + 30 points (exercises) 90% - 100% grade 5 (excellent) 78% - 89% grade 4 (very good) 66% - 77% grade 3 (good) 55% - 65% grade 2 (sufficient) < 55% grade 1 (insufficient).										
]	Number of copies in the library	Availability via other media							
Required literature (available in the library and via other media)	1. Cooper, G.M., molekularni prist Zagreb 2010. (Th	Hausman, tup. Peto iz ne Cell – A	A few								
	2. Puizina J. 202	0: General	biology – teach	ng materials.		Yes, E- learning, Microsoft Teams					
Optional literature (at the time of submission of study programme proposal)	A.Delić i N. Vijt	iuk, Prirod	oslovlje, Školsk	a knjiga, Zagre	b, 2004.(in Croa	itian)					
Quality assurance methods that ensure the acquisition of exit competences	The quality of teaching will be monitored by collecting feedback from students through consultation, discussion and questions asked during classes. At the end of the semester, subject and teacher evaluation will be conducted through an anonymous student survey. Students' performance on the exam will be analyzed and used for the purpose of improvement quality in the next academic year.										
Other (as the proposer wishes to add)											