NAME OF THE COURSE		Molecular-Cytogenetic Chromosome Analysis						
Code	PMB732		Year of study	2				
Course teacher	Ivica Šamanić, PhD, Assistant Professor		Credits (ECTS)	3,0				
Associate teachers	Željana Fredotović, PhD, Assistant Professor		Type of instruction (number of hours)	L	S	E		
			10	5	15			
Status of the course	Elective			Percentage of application of e-learning	10\%			
COURSE DESCRIPTION								
Course objectives	Insight into the molecular and structural dynamics of mitotic and meiotic chromosomes. Theoretical and practical introduction of students with the classical and molecular cytogenetic techniques.							
Course enrolment requirements and entry competences required for the course	None							
Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Student will be able to: - Integrate and implement of the knowledge acquired during the various courses (primarily Cell biology, Genetics and Molecular biology) for studying genomes at the level of chromosomes and chromatin. - Explain the importance of cytogenetics in the area of basic research as well as its applications in medical genetics, biotechnology and agriculture - Perform in situ hybridization and other molecular techniques needed to work in the Molecular and Cytogenetic laboratories (employment of cytogenetic technologists or clinical laboratory technicians). - Use the acquired knowledge and skills for further research in the field.							
Course content broken down in detail by weekly class schedule (syllabus)	Lectures: 1. Cytogenetics methods: molecular cytogenetic techniques; in situ hybridization (fish, gish, fluorescence in situ hybridization on extended dna fibers: fiber-fish), in situ pcr, prins (primed in situ labeling), flow cytometry (karyotyping and sorting of chromosomes by flow cytometry), chromosome microdissection. classical cytogenetic techniques; chromosome preparations, karyotyping, g(giemsa), r-(reverse), c-(centromere) and q-(quinacrine) banding, chromosome labeling. 2. Structural analyses of chromosomes and their constituent proteins: histones, dna, nucleosome morphology and higher-level organisation; heterochromatin and euchromatin, position effect variegation; functional states of chromatin and alternation in chromatin organization. 3. Chromosome organization: metaphase chromosome; centromere and kinetochore, telomere and its maintenance; telomeres and aging. 4. Chromosome territories: the arrangement of chromosomes in the nucleus: chromosomal domains (matrix, loop domains) and their functional significance; dynamics of ct arrangements during postmitotic cell differentiation and in terminally							

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { differentiated cells. } \\
\text { 5. Chromosomal abnormalities: } \\
\text { numerical (polyploidy, aneuploidy) and structural alterations (chromosomal } \\
\text { rearrangements; deletion, duplication, inversion and translocation; structural } \\
\text { abnormality: ring chromosomes and isochromosomes). } \\
\text { Laboratory exercise: }\end{array}
$$ \\
Telomere length analysis directly on chromosomes derived from primary cultured \\
human skin fibroblasts and / or peripheral blood cells \\
using quantitative fluorescence in situ hybridization, q-pna-fish; application of \\
molecular cytogenetic techniques (pcr, gel electrophoresis, immunofluorescence \\
staining); optical fluorescence microscopy, image processing and analysis. \\
Seminars: \\

Seminar is one of the course requirements.\end{array}\right]\)| Students will have to prepare presentation on topics of the original research paper |
| :--- |
| related to the science unit they are studying. the aim is to develop writing skills and |
| presentation skills needed to effectively communicate the purpose, scope, and |
| conclusions of the project. |

submission of study programme proposal)	2. Practical In Situ Hybridisation, Schwarcher T, Heslop Harrison P, Bios, Scientific Publisher Ltd. 2000. 3. Ram J. Singh - Plant cytogenetics-CRC Press, 2017. 4. Species Evolution: The Role of Chromsome Change, Max King, Cambridge University Press, 1995. 5. Thomas Liehr - Fluorescence In Situ Hybridization (FISH)_Application Guide- Springer, 2016
Quality assurance methods that ensure the acquisition of exit competences	Student evaluation.
Other (as the proposer wishes to add)	

