
NAME OF THE COURSE Introduction to Software Engineering 

Code PMID50 Year of study UGU-3 

Course teacher 
doc.dr. sc. Branko 
Žitko 

Credits (ECTS) 5,0 

Associate teachers 
Mensur Duraković 

Type of instruction 
(number of hours) 

L S E F 

30  30  

Status of the course obligatory 
Percentage of 
application of e-learning 

 

COURSE DESCRIPTION 

Course objectives 

Categorize and compare the life cycle of software development. 
Identify and describe the elements of the life cycle of software 
development. 
Make process models and other models that occur during the life cycle of 
software development. 
Describe the stages of specific activities in life cycle of software 
development. 
Measure the process of software and software development. 
Model, implement and test the object-oriented software. 

Course enrolment 
requirements and entry 
competences required for 
the course 

Requirements: Object Oriented Programming 
Competences: Procedural programming in Python 

Learning outcomes 
expected at the level of the 
course (4 to 10 learning 
outcomes) 

describe the process of software development 
measure software 
make UML model of object-oriented software 
write an object-oriented programs in Python 
test software 

Course content broken 
down in detail by weekly 
class schedule (syllabus) 

Week 1: 
Lectures: Introductory lecture: teachers, student obligations, elements of 
the monitoring, examination, evaluation, presentation of the course 
objectives, literature 
The life cycle of software: activities and documents in life cycle, life cycle 
models, linear model, prototype model, spiral model, incremental model, an 
iterative and incremental model, unified process 
Exercise: Defining the class and create an object in Python, attributes and 
methods, special methods 
Week2: 
Lectures: Process model of software development, data flow diagrams, 
Petri nets, software models, the object model, sequence diagram, use-case 
model, scripting, the control flow graph, state diagram 
Exercises: The static attributes and static methods, special methods 
Week3: 
Lectures: Project management software, process and project management, 
team management approach, the model of maturity, personal process, 
analysis of the acquired values, bug tracking, post mortem analysis 
Exercises: collection classes, special methods of collections class 
Week4: 
Lectures: Project planning, task structure breakdown, evaluation 
techniques and reviews of software, cost estimates, LOC estimation, 
COCOMO model, assessment of function points 
Exercises: Inheritance and polymorphism, superclass and subclasses, 
calling superclass method 



Week5: 
Lectures: Measuring software, measurement theory, relational systems of 
measurement, flatness, measuring scales, metrics in software, cyclic 
numbers, Halstead measure, Henry Kafuarov flow of information, process 
metrics and productivity 
Exercises: modules and applications with multiple files, packages 
Week6: 
Lectures: Colloquium 
Exercises: use-case model, action scripting, activity diagram 
Week7: 
Lectures: management and risk analysis, risk identification, risk 
assessment, risk exposure, decision tree risk, risk reduction, risk 
management plan, quality assurance software, formal inspections and 
checks, the reliability of software, statistics assurance 
Exercises: UML use-case diagram, scenario, activity diagram 
Week8: 
Lectures: Requirements, object model of requirements, data flow modeling, 
requirements dictionary, system diagram 
Exercises: UML class diagram, architecture modeling, UML modeling of 
attributes and methods, implementation of the attributes and methods in 
Python 
Week9: 
Lectures: Design, phases of design process, abstraction methods, 
measuring cohesion, measuring connections, monitoring requirements 
Exercises: UML modeling of relationships and inheritance, implementation 
of relations and inheritance in Python 
Week10: 
Lectures: Basics of software testing, test coverage criteria, inclusion, 
functional testing, test matrix, structural testing, test data flow, random 
testing, boundary testing 
Exercises: modeling user interface, the implementation of the user interface 
Week11: 
Lectures: Colloquium 
Exercises: modeling of the control interface, implementation of the control 
interface in Python 
Week12: 
Lectures: Object-oriented software development, identification of objects, 
identifying associations, identification of a multiplicity of associations 
Exercises: UML sequence diagram, mapping diagram of activities in 
sequence diagram 
Week13: 
Lectures: Traditional object-oriented metrics, metrics of object-oriented 
design, MOOD metrics 
Exercises: testing methods in Python 
Week14: 
Lectures: Object-oriented testing, MM testing, coverage of function pairs 
Exercises: Testing class in Python 
Week15: 
Lectures: Colloquium 
Labs: Testing module in Python 



Format of instruction 

☒ lectures 
☐ seminars and workshops 
☒ exercises 
☐ on line in entirety 
☐ partial e-learning 
☐ field work 

☐ independent assignments 
☐ multimedia 
☐ laboratory 
☐ work with mentor 
☐ homework assignments 

Student responsibilities 

class attendance 
active participation in the learning process 
colloquiums 
oral exam 

Screening student work 
(name the proportion of 
ECTS credits for each 
activity so that the total 
number of ECTS credits is 
equal to the ECTS value of 
the course) 

Name Ects Name Ects Name Ects 

Class attendance 2 Research  
Experimental 
work 

 

Oral exam 1 Report  
Homework 
assignments 

 

Seminar essay  Essay    

Tests 1 
Practical 
training 

1   

Written exam  Project    

 

Grading and evaluating 
student work in class and 
at the final exam 

Activity of students in lectures and exercises (attendance, problem solving, 
general activity in the classroom) (25%). 
If student has more than 50% in each colloquium than frees the oral exam. 
Colloquium (50%) 
Oral exam (25%) 
The final grade is derived on the basis of all the above ratings. 

Required literature 
(available in the library and 
via other media) 

Title 
Number of 
copies in 
the library 

Availability via 
other media 

Schaum's Outlines of Software 
Engineering, David A. Gustafson, 
McGraw-Hill, 2002, online 

0 
Web 

 

Optional literature (at the 
time of submission of study 
programme proposal) 

Software Engineering, Ian Sommerville, Addison-Wesley, 2011 

Quality assurance 
methods that ensure the 
acquisition of exit 
competences 

talk with students 
student evaluation using the anonymous survey 
the success of students in the exam 
self-assessment. 

Other (as the proposer 
wishes to add) 

 

 


