
NAME OF THE COURSE Compilers

Code PMID60 Year of study

Course teacher
prof.dr. sc. Marko
Rosić
dr. sc. Tonći Dadić

Credits (ECTS) 5,0

Associate teachers

Type of instruction
(number of hours)

L S E F

30 30

Status of the course
Percentage of
application of e-learning

COURSE DESCRIPTION

Course objectives

Provide the main concepts related to the implementation of compilers of
programming languages: lexical analysis, syntax analysis, semantic
analysis, support the execution of programs and code generation program
in the target language.

Course enrolment
requirements and entry
competences required for
the course

Object oriented programming.

Learning outcomes
expected at the level of the
course (4 to 10 learning
outcomes)

Students will be able to:
1. Explain the procedures for analysis and synthesis program
2. Understand lexical, syntactic and semantic properties of a programming
language
3. Formally define a simple procedural programming language
4. Select the process of syntax analysis appropriate grammar language
5. Develop a language processor simple procedural programming language
6. Develop a virtual machine defined by programming language.

Course content broken
down in detail by weekly
class schedule (syllabus)

Week 1:
Introduction to the subject. Definition compiler. Components compiler.
Automat. Pressure machine. Turing machine.
Exercises. Design and implementation of slot machines.
Week 2:
Regular expressions. Lexical unit. The classification of lexical individuals.
The conflict lexical analysis. Creation of the lexical analyzers. Lexical errors
and recovery.
Exercise: Regular expressions. Using regex class.
Week3: The definition of grammar. The formal presentation of grammar in
BNF notation. Classification of languages by Chomsky.
Practices: Implementation of lexical analyzers based on class RegEx.
Week4:
LL (1) and LR (1) grammar. Left and right generative syntax tree. The
abstract syntax tree.
Exercises: Design and Implementation: object models grammar and
abstract syntax tree.
Week 5:
The introduction of a simple programming language: input, output and
assign variables values algebraic-logical expressions with parentheses. LL
(1) grammar of the language. Syntax analysis, recursive descent.
Exercises: Design and implementation of a recursive descent parser.
Week 6:
Construction of syntax analyzers from top to bottom with the help of the
pusher machine. Conferences begins, followed by the application. Table
syntax analysis.

Practices: Implementation process of building the table syntax analysis.
Week 7:
Parse the program from top to bottom using the pushdown automaton.
Syntax error and recovery.
Exercise: Preparing for the first midterm.
Week 8:
LR (0) syntax analyzer. Building tables GO TO / ACTION. LR syntax
analyzer.
Exercise: The first colloquium
Week 9:
Disadvantages of LR (0) grammar. LR (1) syntax analyzer. Building tables
GO TO / ACTION LR (1) syntax analyzer.
Practices: Implementation of syntax analyzers from top to bottom based on
the discharge slot.
Week 10:
Expanding grammar simple language instruction decisions and repetition.
Table identifiers. Semantic analysis program.
Exercises: Design and implementation of LR syntax analyzer.
Week 11:
Virtual stogovno oriented machine. The introduction of intermediate
instruction.
Exercises: Design and implementation of LR syntax analyzer (continued).
Week 12:
Support the execution of the program. Calling procedures and functions.
Support recursion.
Exercises: Design and implementation of a table identifier and semantic
analysis program.
Week 13:
Generating intermediate code as a linear program of the virtual machine.
Exercises: Design and implementation stogovno oriented virtual machine.
Week 14:
Basic features of translating object-oriented programming languages.
Exercise: Preparing for the second midterm.
Week 15:
Study examples of the virtual machine: Microsoft IL language.
Exercise: The second colloquium.

Format of instruction

☒ lectures
☐ seminars and workshops
☒ exercises
☐ on line in entirety
☐ partial e-learning
☐ field work

☐ independent assignments
☐ multimedia
☐ laboratory
☐ work with mentor
☒ homework assignments

Student responsibilities
Attendance, active participation in the learning process, homework, a
colloquium or practical / written examination, oral examination.

Screening student work
(name the proportion of
ECTS credits for each
activity so that the total
number of ECTS credits is
equal to the ECTS value of
the course)

Name Ects Name Ects Name Ects

Class attendance 0.5 Research
Experimental
work

Oral exam 2 Report
Homework
assignments

0.5

Seminar essay Essay

Tests
Practical
training

Written exam 2 Project

Grading and evaluating
student work in class and
at the final exam

Class attendance (10%), two homework assignments (10%), practical /
written exam (40%)

Required literature
(available in the library and
via other media)

Title
Number of
copies in
the library

Availability via
other media

Srbljić, S: Programming Language
Translation, Element, Zagreb, 2007.

10
9

Optional literature (at the
time of submission of study
programme proposal)

Grune, D., Bal, H., E., Jacobs, C., J., H., Langendoen, K., G.: Modern
Compiler Design, Wiley, 2000.

Quality assurance
methods that ensure the
acquisition of exit
competences

Talk with students, student evaluation using the anonymous survey, the
success of students in the exam, self-assessment.

Other (as the proposer
wishes to add)

