COURSE NAME	Linear Algebra and Matrix Calculus							
Code	PMM10A	Year of study	1st ye					
	Porko lodrijović	Credits	undergraduate study					
Course teacher	Borka Jadrijević	(ECTS)	8					
		Type of	L	S	Е			
Associate teachers		instruction						
		(number of hours)	45		45			
	Compulsory course	Percentage	30%					
Status of the source		of						
Status of the course		application						
	of e-learning							
	COURSE DESCRIPTION	noor Algobra a	nd Ma	triv Co		ia ta		
	The objective of the undergraduate course <i>Linear Algebra and Matrix Calculus</i> is to introduce physics students to basic concepts of linear algebra including linear							
Course objectives	maps, matrices, determinants, eigenvalues and eigenvectors, Gaussian reduction,							
	etc. The course focuses both on theory and on calculation techniques.							
Prerequisites	None		1. 4					
	Upon successful completion of the course, the student is able to: - recognize the basic mathematical structures, in particular the structure							
	of a vector space;							
	 understand why it suffices to define a linear transformation on a basis 							
	of a vector space;							
	- gain skills in matrix calculus and in evaluating determinants;							
Learning outcomes	the bases and understand the relationship between two such matrices; course - distinguish consistent from inconsistent linear systems of equations;							
expected at the level of the course								
(4 to 10 learning								
outcomes)	using different methods/algorithms;							
,	- compute eigenvalues and eigenvectors of an eigenvalue problem;							
	- find the Jordan canonical form of a matrix;							
	- understand in what way both an inner product and a norm enrich the							
	structure of vector space;							
	 construct an orthonormal basis by means of the Gram-Schmidt orthonormalization process. 							
		I structures. Basic mathematical structures.						
	Vector space. Basis, subspace, quotient space of a vector space. (6 hours)							
	2. Linear maps. Linear maps, examples. Isomorphism of vector spaces.							
	Rank and nullity of a linear map. Algebraic structure of the sets Hom (U,V)							
	 and Hom V. Linear functionals, examples. (6 hours) 3. Matrices and determinants. Vector space M_{mxn} and algebra M_n. General 							
	linear group. Orthogonal group. Rank of a matrix. Elementary							
	transformations. Determinant. Binet-Cauchy theorem. Laplace's expansion.							
Course content	Adjoint matrix. (8 hours)							
broken down in	 Invariants of a linear operator. Coordinatization of a vector space and transformation of coordinates. Matrix representation of a linear map. 							
detail by weekly	Characteristic and minimal polynomials. Hamilton-Cayley theorem. Invariant							
class schedule (syllabus)	subspaces. Eigenvalue and the associated eigenspace. Diagonalizability of							
(Syllabus)	matrix (transformation). Jordan canonical form. (10 hours)							
	5. Systems of linear equations. System of linear equations - consistency							
	problem. Cramer's rule. Description of the solution set to a (non)homogeneous system of linear equations. Elementary reduction							
	operations on system equations (matrix rows). Gauss' method. (7 hours)							
	6. Inner product space. Inner product space, examples.							
	Cauchy-Schwarz-Bunyakovsky inequality. Norm on inner product space,							
	angle, orthogonality. Gram matrix. Gr process. Calculation in an orthonorma	Gram-Schmidt orthonormalization						
		ล มสอเอ. บาแนไ	ушар	s hiese	51 VILLY			

	inner product, examples and properties. Unitary group. (8 hours)					
Format of instruction	Lectures, tutorial sessions					
Student responsibilities	Attendance of lectures and tutorial sessions is obligatory.					
Screening student work (name the proportion of ECTS credits for each activity so that the total number of ECTS credits is equal to the ECTS value of the course)	Attending classes: 2,5 ECTS Written test: 2,5 ECTS Oral exam: 3 ECTS					
Grading and evaluating student work in class and at the final exam	The exam is taken in written and oral form. The passing grade of the written exam is a requirement for the oral exam. Both parts of the exam are equally weighted in the final grade. There are two partial written exams during the semester. Passing both partial written exams allows students to take the oral exam. In case of failure of the partial exams or the oral exam, the student must retake the written exam before taking the oral exam again.					
Required literature (available in the library and via other media)	Title	No of copies in the library	Availability through other media			
	K. Horvatić, <i>Linearna algebra</i> , Golden marketing, Tehnička knjiga, Zagreb, 2004.	sufficient				
Optional literature (at the time of submission of study program proposal)	S.H. Friedberg, A.J. Insel and L.E. Spence, <i>Linear Algebra</i> , Prentice Hall, 2003. J. Hefferon, <i>Linear Algebra</i> , <u>http://joshua.smcvt.edu/linearalgebra/</u>					
Quality assurance methods that ensure the acquisition of exit competences	Statistics of test results and anonymous student evaluations at the end of the semester according to the regulations of the University of Split.					
Other (as the proposer wishes to add)						