COURSE NAME	Numerical linear algebra					
Code	PMM210	Year of study	2nd year of graduate study			
Course teacher	Jurica Perić	Credits (ECTS)	5			
		Type of instructio	L	S	E	
Associate teachers		(number of hours)	30		30	
Status of the course	ELECTIVE COURSE	Percentage of application of e-learning	40\%			
COURSE DESCRIPTION						
Course objectives	Introducing methods of numerical linear algebra that are commonly used in scientific and technical applications, the ability to assess the accuracy of the method, the ability to make own algorithms and the use of existing programming libraries.					
Course enrolment requirements and entry competences required for the course	Successfully completed courses „Linearna algebra", „Foundation of mathematical analysis".					
Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	The student is able to: - operate with basic theorems in the theory of optimal approximation (approximation from a given set, the existence, uniqueness) - reproduce basic matrix norms and their properties - analyze differences in solving system of linear equations, solve system of linear equations using Gaussian algorithm (LU factorization, LU factorization with pivoting) and Cholesky algorithm - examine the numerical properties if operations in the algorithm are performed on the computer in the final precision arithmetic - explain and use SVD decomposition - Analyze orthogonal diagonalization of a matrix - explain Householders factorization and its advantages					
Course content broken down in detail by weekly class schedule (syllabus)	The fundamental ideas of linear algebra: basic algorithms on matrices, vector and matrix norms. -2 hours Computer arithmetic. - 2 hours Systems of linear equations: Gauss algorithm, Cholesky algorithm, accuracy and improvement of accuracy. -4 hours Iterative methods. -2 hours Least squares problem (LS) and QR decomposition. -4 hours Eigenvalue problem for symmetric matrices: QR method, Jacobi method. -4 hours Gram-Schmidt orthogonalization, Householder factorization. -4 hours Singular Value Decomposition (SVD), fast updating of SVD decomposition (updating and downdating). -4 hours Latent Semantic Indexing (LSI) and the application of SVD decomposition for constructing Web browser. -4 hours					
Format of instruction	Lectures, exercises.					
Student responsibilities	Attendance at 70\% of lectures and 70\% of exercises.					
Screening student	Attendance - 1 ECTS					

work (name the proportion of ECTS credits for each activity so that the total number of ECTS credits is equal to the ECTS value of the course)	Colloquium -1.5 ECTS Written exam - 1 ECTS Oral exam - 1.5 ECTS

