COURSE NAME	Mathematics I					
Code	PMM851	Year of study	1st year of undegraduate study			
Course teacher	doc. dr. sc. Ivo Ugrina	Credits (ECTS)	7			
Associate teachers		Type of instruction (number of hours)	L	S	E	
			45		45	
Status of the course	REQUIRED COURSE	Percentage of application of e-learning	30\%			
COURSE DESCRIPTION						
Course objectives	Focus on intuitive presentation of mathematical theory and on illustrative examples in order to prepare students for future courses.					
Course enrolment requirements and entry competences required for the course						
Learning outcomes expected at the level of the course (4 to 10 learning outcomes)	Successful students will be able to: - define and explain real and complex numbers - explain what mathematical induction is - describe properties of elementary real functions - apply differential calculus and explain it - define integral and apply it - define sequences and series of real numbers - work with matrices and explain their basic properties					
Course content broken down in detail by weekly class schedule (syllabus)	1. Sets, axioms for the real numbers, functions, supremum, infimum, mathematical induction (3) 2. Sequence, subsequence, sequence limits in R, Cauchy sequence, countability (3) 3. Function limits in R, continuous functions, basic examples (3) 4. Differentiability, derivative of a function, rules of computation, continuity and differentiability, implicit differentiation (6) 5. Higher-order derivatives, basic theorems about differetionation, applications (6) 6. Indefinite integral, basic rules of integration, integration of elementary functions (6) 7. Definite integral, Newton-Leibniz formula, , applications (6) 8. Series of real numbers, convergent series, convergence tests, Taylor series, Fourier series (6) 9. Matrices, matrix algebra, inverse matrix, rank, determinant, elementary transformations, systems of linear equations, Cramer's rule, singular value decomposition (6)					
Format of instruction	Exercises section and lectures					
Student responsibilities	Students are expected to be present for every lecture and exercise section.					
Screening student work (name the proportion of ECTS credits for each activity so that the total number of ECTS credits is equal to the ECTS value of the course)	Attending lectures and exercises (2) Written final exam/mid-term exams (5)					

Grading and evaluating student work in class and at the final exam	During the semester, students will write three tests with practical and theoretical tasks. To successfully meet the requirements of the course students must pass all three tests.
Required literature (available in the library and via other media)	I. Slapničar, Matematika 1, FESB, Split, 2002. I. Slapničar, Matematika 2, FESB, Split, 2002. B.P. Demidovič, Zadaci i riješeni primjeri iz više matematike, Tehnička knjiga, Zagreb, 1989. I. Slapničar, J. Barić, M. Ninčević, Matematika 1 - zbirka zadataka, FESB, Split, 2010.
Optional literature (at the time of submission of study programme proposal)	K. Horvatić, Linearna algebra, 9. izdanje, Tehnička knijga, Zagreb, 2004. N. Uglešić, Viša matematika I and II, skripta, PMF, Split. Bradič, Pečarić, Matematika za tehnološke fakultete, Element, Zagreb P.V. Minorski, Zbirka zadataka iz više matematike, Tehnička knijga, Zagreb, 1990.
Quality assurance methods that ensure the acquisition of exit competences	Detailed statistics of student results, gathering feedback from students through official questionnaires and lecturer's self-evaluation.
Other (as the proposer wishes to add)	

